Pandas迭代 Pandas 重建索引 Pandas排序 对Pandas对象进行基本迭代的行为取决于类型。在遍历一个Series时,它被视为类似数组,并且基本迭代产生这些值。其他数据结构(如DataFrame和Panel)遵循 类似于字典的 惯例,即迭代对象的 键 。 总之,基本的迭代(对于 我 在对象中)产生 - Series - 值 DataFrame - 列标签 Panel - 项目标签 迭代DataFrame 迭代DataFrame会给出列名称。让我们考虑下面的例子来理解相同的情况。 import pandas as pd import numpy as np N=20 df = pd.DataFrame({ 'A': pd.date_range(start='2016-01-01',periods=N,freq='D'), 'x': np.linspace(0,stop=N-1,num=N), 'y': np.random.rand(N), 'C': np.random.choice(['Low','Medium','High'],N).tolist(), 'D': np.random.normal(100, 10, size=(N)).tolist() }) for col in df: print col 其 输出 如下 - A C D x y 要迭代DataFrame的行,我们可以使用以下函数 - iteritems() - 遍历(键,值)对 iterrows() - 遍历行(索引,序列)对 itertuples() - 遍历 行为namedtuples iteritems() 将每列作为关键字值进行迭代,并将标签作为键和列值作为Series对象进行迭代。 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(4,3),columns=['col1','col2','col3']) for key,value in df.iteritems(): print key,value 其 输出 如下 - col1 0 0.802390 1 0.324060 2 0.256811 3 0.839186 Name: col1, dtype: float64 col2 0 1.624313 1 -1.033582 2 1.796663 3 1.856277 Name: col2, dtype: float64 col3 0 -0.022142 1 -0.230820 2 1.160691 3 -0.830279 Name: col3, dtype: float64 请注意,每个列在Series中作为键值对单独迭代。 iterrows() iterrows()返回产生每个索引值的迭代器以及包含每行数据的序列。 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(4,3),columns = ['col1','col2','col3']) for row_index,row in df.iterrows(): print row_index,row 其 输出 如下 - 0 col1 1.529759 col2 0.762811 col3 -0.634691 Name: 0, dtype: float64 1 col1 -0.944087 col2 1.420919 col3 -0.507895 Name: 1, dtype: float64 2 col1 -0.077287 col2 -0.858556 col3 -0.663385 Name: 2, dtype: float64 3 col1 -1.638578 col2 0.059866 col3 0.493482 Name: 3, dtype: float64 注 - 由于 iterrows() 遍历行,因此它不会保留行中的数据类型。0,1,2是行索引,col1,col2,col3是列索引。 itertuples() itertuples()方法将返回一个迭代器,为DataFrame中的每一行生成一个命名的元组。元组的第一个元素将是行的相应索引值,而其余值是行值。 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(4,3),columns = ['col1','col2','col3']) for row in df.itertuples(): print row 其 输出 如下 - Pandas(Index=0, col1=1.5297586201375899, col2=0.76281127433814944, col3=- 0.6346908238310438) Pandas(Index=1, col1=-0.94408735763808649, col2=1.4209186418359423, col3=- 0.50789517967096232) Pandas(Index=2, col1=-0.07728664756791935, col2=-0.85855574139699076, col3=- 0.6633852507207626) Pandas(Index=3, col1=0.65734942534106289, col2=-0.95057710432604969, col3=0.80344487462316527) 注 - 不要在迭代时尝试修改任何对象。 迭代是为了读取而迭代器返回原始对象(视图)的副本,因此这些更改不会反映到原始对象上。 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(4,3),columns = ['col1','col2','col3']) for index, row in df.iterrows(): row['a'] = 10 print df 其 输出 如下 - col1 col2 col3 0 -1.739815 0.735595 -0.295589 1 0.635485 0.106803 1.527922 2 -0.939064 0.547095 0.038585 3 -1.016509 -0.116580 -0.523158 观察,没有反映变化。 Pandas 重建索引 Pandas排序