Python处理JSON数据 处理CSV数据的Python Python处理XLS数据 JSON文件以可读的格式将数据存储为文本。JSON代表JavaScript Object Notation。使用 read_json 函数,熊猫可以读取JSON文件。 输入数据 通过将以下数据复制到文本编辑器(如记事本)来创建JSON文件。使用 .json 扩展名保存文件,并选择文件类型作为 所有文件(。) 。 { "ID":["1","2","3","4","5","6","7","8" ], "Name":["Rick","Dan","Michelle","Ryan","Gary","Nina","Simon","Guru" ] "Salary":["623.3","515.2","611","729","843.25","578","632.8","722.5" ], "StartDate":[ "1/1/2012","9/23/2013","11/15/2014","5/11/2014","3/27/2015","5/21/2013", "7/30/2013","6/17/2014"], "Dept":[ "IT","Operations","IT","HR","Finance","IT","Operations","Finance"] } 阅读JSON文件 熊猫库的 read_json 函数可用于将JSON文件读入pandas DataFrame。 import pandas as pd data = pd.read_json('path/input.json') print (data) 当我们执行上面的代码时,它会产生以下结果。 Dept ID Name Salary StartDate 0 IT 1 Rick 623.30 1/1/2012 1 Operations 2 Dan 515.20 9/23/2013 2 IT 3 Tusar 611.00 11/15/2014 3 HR 4 Ryan 729.00 5/11/2014 4 Finance 5 Gary 843.25 3/27/2015 5 IT 6 Rasmi 578.00 5/21/2013 6 Operations 7 Pranab 632.80 7/30/2013 7 Finance 8 Guru 722.50 6/17/2014 读取特定的列和行 与我们在前一章中已经看到的读取CSV文件 类似 ,读取JSON文件到DataFrame后,pandas库的 read_json 函数也可用于读取一些特定列和特定行。为此,我们使用称为 .loc() 的多轴索引方法。我们选择显示某些行的工资和名称列。 import pandas as pd data = pd.read_json('path/input.xlsx') # Use the multi-axes indexing funtion print (data.loc[[1,3,5],['salary','name']]) 当我们执行上面的代码时,它会产生以下结果。 salary name 1 515.2 Dan 3 729.0 Ryan 5 578.0 Rasmi 将JSON文件作为记录读取 我们还可以将 to_json 函数与参数一起应用于将JSON文件内容读入单个记录。 import pandas as pd data = pd.read_json('path/input.xlsx') print(data.to_json(orient='records', lines=True)) 当我们执行上面的代码时,它会产生以下结果。 {"Dept":"IT","ID":1,"Name":"Rick","Salary":623.3,"StartDate":"1\/1\/2012"} {"Dept":"Operations","ID":2,"Name":"Dan","Salary":515.2,"StartDate":"9\/23\/2013"} {"Dept":"IT","ID":3,"Name":"Tusar","Salary":611.0,"StartDate":"11\/15\/2014"} {"Dept":"HR","ID":4,"Name":"Ryan","Salary":729.0,"StartDate":"5\/11\/2014"} {"Dept":"Finance","ID":5,"Name":"Gary","Salary":843.25,"StartDate":"3\/27\/2015"} {"Dept":"IT","ID":6,"Name":"Rasmi","Salary":578.0,"StartDate":"5\/21\/2013"} {"Dept":"Operations","ID":7,"Name":"Pranab","Salary":632.8,"StartDate":"7\/30\/2013"} {"Dept":"Finance","ID":8,"Name":"Guru","Salary":722.5,"StartDate":"6\/17\/2014"} 处理CSV数据的Python Python处理XLS数据