小编典典

如何剖析Python中的内存使用情况?

python

最近,我对算法产生了兴趣,并通过编写一个简单的实现,然后以各种方式对其进行了优化来开始探索它们。

我已经熟悉了用于分析运行时的标准Python模块(对于大多数事情,我发现IPython中的timeit magic函数就足够了),但是我也对内存使用感兴趣,因此我也可以探索这些折衷方案(例如,缓存先前计算的值与根据需要重新计算它们的表的成本)。是否有一个模块可以为我配置给定功能的内存使用情况?


阅读 390

收藏
2020-02-19

共1个答案

小编典典

在这里已经回答了这个问题:Python memory profiler

基本上,你可以执行以下操作(引用自Guppy-PE):

>>> from guppy import hpy; h=hpy()
>>> h.heap()
Partition of a set of 48477 objects. Total size = 3265516 bytes.
 Index  Count   %     Size   % Cumulative  % Kind (class / dict of class)
     0  25773  53  1612820  49   1612820  49 str
     1  11699  24   483960  15   2096780  64 tuple
     2    174   0   241584   7   2338364  72 dict of module
     3   3478   7   222592   7   2560956  78 types.CodeType
     4   3296   7   184576   6   2745532  84 function
     5    401   1   175112   5   2920644  89 dict of class
     6    108   0    81888   3   3002532  92 dict (no owner)
     7    114   0    79632   2   3082164  94 dict of type
     8    117   0    51336   2   3133500  96 type
     9    667   1    24012   1   3157512  97 __builtin__.wrapper_descriptor
<76 more rows. Type e.g. '_.more' to view.>
>>> h.iso(1,[],{})
Partition of a set of 3 objects. Total size = 176 bytes.
 Index  Count   %     Size   % Cumulative  % Kind (class / dict of class)
     0      1  33      136  77       136  77 dict (no owner)
     1      1  33       28  16       164  93 list
     2      1  33       12   7       176 100 int
>>> x=[]
>>> h.iso(x).sp
 0: h.Root.i0_modules['__main__'].__dict__['x']
>>> 
2020-02-19