小编典典

Elasticsearch-“星期几”的DateTime映射

elasticsearch

我在课堂上有以下财产:

public DateTime InsertedTimeStamp { get; set; }

通过ES中的以下映射

"insertedTimeStamp ":{
    "type":"date",
    "format":"yyyy-MM-ddTHH:mm:ssZ"
},

我想进行汇总以返回按“星期几”分组的所有数据,即“星期一”,“星期二” …等

我知道我可以在聚合调用中使用“脚本”来执行此操作,但是,据我了解,如果有很多文档,使用脚本不会对性能产生不小的影响。

有没有一种方法可以用“子属性”映射属性。即我可以用一个字符串:

"somestring":{
    "type":"string",
    "analyzer":"full_word",
    "fields":{
        "partial":{
            "search_analyzer":"full_word",
            "analyzer":"partial_word",
            "type":"string"
        },
        "partial_back":{
            "search_analyzer":"full_word",
            "analyzer":"partial_word_back",
            "type":"string"
        },
        "partial_middle":{
            "search_analyzer":"full_word",
            "analyzer":"partial_word_name",
            "type":"string"
        }
    }
},

全部具有.net代码中类的单个属性。

我可以做一些类似的事情来分别存储“完整日期”,然后分别存储“年”,“月”和“天”等(在索引时间存储某种“脚本”),还是我需要在存储中添加更多属性?上课并分别映射它们?这是Transform所做的吗?(现在已贬值,因此似乎表明我需要单独的字段…)


阅读 467

收藏
2020-06-22

共1个答案

小编典典

使用索引pattern_capture过滤器在索引编制时绝对可以做到这一点。

首先,您需要为每个日期部分定义一个分析器+令牌过滤器组合,并将每个分配给日期字段的子字段。每个令牌过滤器将仅捕获其感兴趣的组。

{
  "settings": {
    "analysis": {
      "analyzer": {
        "year_analyzer": {
          "type": "custom",
          "tokenizer": "keyword",
          "filter": [
            "year"
          ]
        },
        "month_analyzer": {
          "type": "custom",
          "tokenizer": "keyword",
          "filter": [
            "month"
          ]
        },
        "day_analyzer": {
          "type": "custom",
          "tokenizer": "keyword",
          "filter": [
            "day"
          ]
        },
        "hour_analyzer": {
          "type": "custom",
          "tokenizer": "keyword",
          "filter": [
            "hour"
          ]
        },
        "minute_analyzer": {
          "type": "custom",
          "tokenizer": "keyword",
          "filter": [
            "minute"
          ]
        },
        "second_analyzer": {
          "type": "custom",
          "tokenizer": "keyword",
          "filter": [
            "second"
          ]
        }
      },
      "filter": {
        "year": {
          "type": "pattern_capture",
          "preserve_original": false,
          "patterns": [
            "(\\d{4})-\\d{2}-\\d{2}[tT]\\d{2}:\\d{2}:\\d{2}[zZ]"
          ]
        },
        "month": {
          "type": "pattern_capture",
          "preserve_original": false,
          "patterns": [
            "\\d{4}-(\\d{2})-\\d{2}[tT]\\d{2}:\\d{2}:\\d{2}[zZ]"
          ]
        },
        "day": {
          "type": "pattern_capture",
          "preserve_original": false,
          "patterns": [
            "\\d{4}-\\d{2}-(\\d{2})[tT]\\d{2}:\\d{2}:\\d{2}[zZ]"
          ]
        },
        "hour": {
          "type": "pattern_capture",
          "preserve_original": false,
          "patterns": [
            "\\d{4}-\\d{2}-\\d{2}[tT](\\d{2}):\\d{2}:\\d{2}[zZ]"
          ]
        },
        "minute": {
          "type": "pattern_capture",
          "preserve_original": false,
          "patterns": [
            "\\d{4}-\\d{2}-\\d{2}[tT]\\d{2}:(\\d{2}):\\d{2}[zZ]"
          ]
        },
        "second": {
          "type": "pattern_capture",
          "preserve_original": false,
          "patterns": [
            "\\d{4}-\\d{2}-\\d{2}[tT]\\d{2}:\\d{2}:(\\d{2})[zZ]"
          ]
        }
      }
    }
  },
  "mappings": {
    "test": {
      "properties": {
        "date": {
          "type": "date",
          "format": "yyyy-MM-dd'T'HH:mm:ssZ",
          "fields": {
            "year": {
              "type": "string",
              "analyzer": "year_analyzer"
            },
            "month": {
              "type": "string",
              "analyzer": "month_analyzer"
            },
            "day": {
              "type": "string",
              "analyzer": "day_analyzer"
            },
            "hour": {
              "type": "string",
              "analyzer": "hour_analyzer"
            },
            "minute": {
              "type": "string",
              "analyzer": "minute_analyzer"
            },
            "second": {
              "type": "string",
              "analyzer": "second_analyzer"
            }
          }
        }
      }
    }
  }
}

然后,当您为日期编入索引(例如)时2016-01-22T10:01:23Z,您将获得每个填充了相关部分的日期子字段,即

  • date2016-01-22T10:01:23Z
  • date.year2016
  • date.month01
  • date.day22
  • date.hour10
  • date.minute01
  • date.second23

然后,您可以随意在任何这些子字段上进行汇总以获得所需的内容。

2020-06-22