python小白 python小白

Python-如何从pandas groupby().sum()的输出中创建新列?

python

尝试从groupby计算中创建新列。在下面的代码中,我获得了每个日期的正确计算值(请参阅下面的组),但是当我尝试df['Data4']用它创建一个新列()时,我得到了NaN。因此,我正在尝试在数据框中使用Data3所有日期的总和创建一个新列,并将其应用于每个日期行。例如,2015-05-08位于2行中(总计为50 + 5 = 55),在这个新列中,我希望两行中都具有55。

import pandas as pd
import numpy as np
from pandas import DataFrame

df = pd.DataFrame({
    'Date' : ['2015-05-08', '2015-05-07', '2015-05-06', '2015-05-05', '2015-05-08', '2015-05-07', '2015-05-06', '2015-05-05'], 
    'Sym'  : ['aapl', 'aapl', 'aapl', 'aapl', 'aaww', 'aaww', 'aaww', 'aaww'], 
    'Data2': [11, 8, 10, 15, 110, 60, 100, 40],
    'Data3': [5, 8, 6, 1, 50, 100, 60, 120]
})

group = df['Data3'].groupby(df['Date']).sum()

df['Data4'] = group

阅读 17

收藏
关注 2
2020-02-13

共1个答案

python大咖 python大咖

你要使用transform此方法将返回索引与df对齐的Series,然后可以将其添加为新列:

In [74]:

df = pd.DataFrame({'Date': ['2015-05-08', '2015-05-07', '2015-05-06', '2015-05-05', '2015-05-08', '2015-05-07', '2015-05-06', '2015-05-05'], 'Sym': ['aapl', 'aapl', 'aapl', 'aapl', 'aaww', 'aaww', 'aaww', 'aaww'], 'Data2': [11, 8, 10, 15, 110, 60, 100, 40],'Data3': [5, 8, 6, 1, 50, 100, 60, 120]})
​
df['Data4'] = df['Data3'].groupby(df['Date']).transform('sum')
df
Out[74]:
   Data2  Data3        Date   Sym  Data4
0     11      5  2015-05-08  aapl     55
1      8      8  2015-05-07  aapl    108
2     10      6  2015-05-06  aapl     66
3     15      1  2015-05-05  aapl    121
4    110     50  2015-05-08  aaww     55
5     60    100  2015-05-07  aaww    108
6    100     60  2015-05-06  aaww     66
7     40    120  2015-05-05  aaww    121
2020-02-13

回答这个问题

Nothing to preview