Python theano.tensor.signal.downsample 模块,max_pool_2d() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用theano.tensor.signal.downsample.max_pool_2d()

项目:lazyprogrammer    作者:inhwane    | 项目源码 | 文件源码
def convpool(X, W, b, poolsize=(2, 2)):
    conv_out = conv2d(input=X, filters=W)

    # downsample each feature map individually, using maxpooling
    pooled_out = downsample.max_pool_2d(
        input=conv_out,
        ds=poolsize,
        ignore_border=True
    )

    # add the bias term. Since the bias is a vector (1D array), we first
    # reshape it to a tensor of shape (1, n_filters, 1, 1). Each bias will
    # thus be broadcasted across mini-batches and feature map
    # width & height
    # return T.tanh(pooled_out + b.dimshuffle('x', 0, 'x', 'x'))
    return relu(pooled_out + b.dimshuffle('x', 0, 'x', 'x'))
项目:lazyprogrammer    作者:inhwane    | 项目源码 | 文件源码
def convpool(X, W, b, poolsize=(2, 2)):
    conv_out = conv2d(input=X, filters=W)

    # downsample each feature map individually, using maxpooling
    pooled_out = downsample.max_pool_2d(
        input=conv_out,
        ds=poolsize,
        ignore_border=True
    )

    # add the bias term. Since the bias is a vector (1D array), we first
    # reshape it to a tensor of shape (1, n_filters, 1, 1). Each bias will
    # thus be broadcasted across mini-batches and feature map
    # width & height
    # return T.tanh(pooled_out + b.dimshuffle('x', 0, 'x', 'x'))
    return relu(pooled_out + b.dimshuffle('x', 0, 'x', 'x'))
项目:MoodClassification    作者:disha-dp    | 项目源码 | 文件源码
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
项目:question-answering    作者:emorynlp    | 项目源码 | 文件源码
def get_output(self, train):
        X = self.get_input(train)
        output = downsample.max_pool_2d(X, ds=self.poolsize, st=self.stride, ignore_border=self.ignore_border,
                                        mode=globals.pooling_mode)
        return output


# class AveragePooling2D(MaxPooling2D):
#     def __init__(self, poolsize=(2, 2), stride=None, ignore_border=True):
#         super(AveragePooling2D, self).__init__()
#         self.input = T.tensor4()
#         self.poolsize = tuple(poolsize)
#         self.stride = stride
#         self.ignore_border = ignore_border
#     def get_output(self, train):
#         X = self.get_input(train)
#         sums = images2neibs(X, neib_shape=(globals.s_size, 1)).sum(axis=-1)
#         counts = T.neq(images2neibs(X, neib_shape=(globals.s_size, 1)), 0).sum(axis=-1)
#         average = (sums/counts).reshape((X.shape[0], X.shape[1], 2, 1))
#         return average
项目:CNN-for-Chinese-spam-SMS    作者:idiomer    | 项目源码 | 文件源码
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
项目:Humour-Detection    作者:srishti-1795    | 项目源码 | 文件源码
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
项目:DeepLearning    作者:Ahagpp    | 项目源码 | 文件源码
def __init__(self,  input,params_W,params_b, filter_shape, image_shape, poolsize=(2, 2)):
        assert image_shape[1] == filter_shape[1]
        self.input = input
        self.W = params_W
        self.b = params_b
        # ??
        conv_out = conv.conv2d(
            input=input,
            filters=self.W,
            filter_shape=filter_shape,
            image_shape=image_shape
        )
        # ???
        pooled_out = downsample.max_pool_2d(
            input=conv_out,
            ds=poolsize,
            ignore_border=True
        )
        self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
        self.params = [self.W, self.b]
项目:DeepLearning    作者:Ahagpp    | 项目源码 | 文件源码
def __init__(self,  input,params_W,params_b, filter_shape, image_shape, poolsize=(2, 2)):
        assert image_shape[1] == filter_shape[1]
        self.input = input
        self.W = params_W
        self.b = params_b
        # ??
        conv_out = conv.conv2d(
            input=input,
            filters=self.W,
            filter_shape=filter_shape,
            image_shape=image_shape
        )
        # ???
        pooled_out = downsample.max_pool_2d(
            input=conv_out,
            ds=poolsize,
            ignore_border=True
        )
        self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
        self.params = [self.W, self.b]
项目:SE16-Task6-Stance-Detection    作者:nestle1993    | 项目源码 | 文件源码
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
项目:SE16-Task6-Stance-Detection    作者:nestle1993    | 项目源码 | 文件源码
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
项目:cv-utils    作者:gmichaeljaison    | 项目源码 | 文件源码
def max_pooling(matrix, pool_size):
    """
    Applies max-pooling for the given matrix for specified pool_size.
        Only the maximum value in the given pool size is chosen to construct the result.

    :param matrix: Input matrix
    :param pool_size: pooling cell size
    :return: max-pooled output
    """
    """
    t_input = tensor.dmatrix('input')

    pool_out = ds.max_pool_2d(t_input, pool_size, ignore_border=True)
    pool_f = theano.function([t_input], pool_out)

    return pool_f(matrix)
    """
    pass
项目:textGAN_public    作者:dreasysnail    | 项目源码 | 文件源码
def encoder(tparams, layer0_input, filter_shape, pool_size, options, prefix='cnn_d'):

    """ filter_shape: (number of filters, num input feature maps, filter height,
                        filter width)
        image_shape: (batch_size, num input feature maps, image height, image width)
    """

    conv_out = conv.conv2d(input=layer0_input, filters=tparams[_p(prefix,'W')], filter_shape=filter_shape)
    # conv_out_tanh = tensor.tanh(conv_out + tparams[_p(prefix,'b')].dimshuffle('x', 0, 'x', 'x'))
    # output = downsample.max_pool_2d(input=conv_out_tanh, ds=pool_size, ignore_border=False)

    if options['cnn_activation'] == 'tanh':
        conv_out_tanh = tensor.tanh(conv_out + tparams[_p(prefix,'b')].dimshuffle('x', 0, 'x', 'x'))
        output = downsample.max_pool_2d(input=conv_out_tanh, ds=pool_size, ignore_border=False)  # the ignore border is very important
    elif options['cnn_activation'] == 'linear':
        conv_out2 = conv_out + tparams[_p(prefix,'b')].dimshuffle('x', 0, 'x', 'x')
        output = downsample.max_pool_2d(input=conv_out2, ds=pool_size, ignore_border=False)  # the ignore border is very important
    else:
        print(' Wrong specification of activation function in CNN')

    return output.flatten(2)

    #output.flatten(2)
项目:personality-detection    作者:SenticNet    | 项目源码 | 文件源码
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = None#(batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
项目:KEHNN    作者:MarkWuNLP    | 项目源码 | 文件源码
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
项目:coling2016-claim-classification    作者:UKPLab    | 项目源码 | 文件源码
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
项目:text_classification    作者:senochow    | 项目源码 | 文件源码
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
项目:text_classification    作者:senochow    | 项目源码 | 文件源码
def predict_maxpool(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            return conv_out_tanh
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
项目:text_classification    作者:senochow    | 项目源码 | 文件源码
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
项目:text_classification    作者:senochow    | 项目源码 | 文件源码
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
项目:dcnn_mlee    作者:zjh-nudger    | 项目源码 | 文件源码
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
项目:logicnn    作者:ZhitingHu    | 项目源码 | 文件源码
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
项目:TACNTN    作者:MarkWuNLP    | 项目源码 | 文件源码
def predict(self, new_data, batch_size):
        """
        predict for new data
        """
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
项目:reinforcement_learning    作者:andreweskeclarke    | 项目源码 | 文件源码
def output(self, x, a):
        return downsample.max_pool_2d(input, maxpool_shape, ignore_border=True)
项目:deep-learning-theano    作者:aidiary    | 项目源码 | 文件源码
def __init__(self, rng, input, image_shape, filter_shape, poolsize=(2, 2)):
        # ???????????????????
        assert image_shape[1] == filter_shape[1]

        fan_in = np.prod(filter_shape[1:])
        fan_out = filter_shape[0] * np.prod(filter_shape[2:]) / np.prod(poolsize)

        W_bound = np.sqrt(6.0 / (fan_in + fan_out))
        self.W = theano.shared(
            np.asarray(rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
                       dtype=theano.config.floatX),  # @UndefinedVariable
            borrow=True)

        b_values = np.zeros((filter_shape[0],), dtype=theano.config.floatX)  # @UndefinedVariable
        self.b = theano.shared(value=b_values, borrow=T)

        # ??????????????????
        conv_out = conv.conv2d(
            input=input,
            filters=self.W,
            filter_shape=filter_shape,
            image_shape=image_shape)

        # Max-pooling????????????????????
        pooled_out = downsample.max_pool_2d(
            input=conv_out,
            ds=poolsize,
            ignore_border=True)

        # ????????
        self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))

        self.params = [self.W, self.b]
项目:machine-deep_learning    作者:Charleswyt    | 项目源码 | 文件源码
def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
        self.inpt = inpt.reshape(self.image_shape)
        conv_out = conv.conv2d(
            input=self.inpt, filters=self.w, filter_shape=self.filter_shape,
            image_shape=self.image_shape)
        pooled_out = downsample.max_pool_2d(
            input=conv_out, ds=self.poolsize, ignore_border=True)
        self.output = self.activation_fn(
            pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
        self.output_dropout = self.output # no dropout in the convolutional layers
项目:experiments    作者:tencia    | 项目源码 | 文件源码
def conv_and_pool(input_expr, w, convs_mult, p_drop_conv):
    conv_w = w
    if convs_mult == 2:
        conv_w = T.concatenate([w, w[:,:,::-1,::-1]], axis=0)
    elif convs_mult == 4:
        conv_w = T.concatenate([w, w[:,:,::-1], w[:,:,:,::-1], w[:,:,::-1,::-1]], axis=0)
    e1 = rectify(conv2d(input_expr, conv_w))
    e2 = max_pool_2d(e1, (2, 2), ignore_border=False)
    return dropout(e2, p_drop_conv)
项目:NADE    作者:MarcCote    | 项目源码 | 文件源码
def _decorate_fprop(self, layer):
        layer_fprop = layer.fprop

        def decorated_fprop(instance, input, return_output_preactivation=False):
            if return_output_preactivation:
                output, pre_output = layer_fprop(input, return_output_preactivation)
                pooled_output = downsample.max_pool_2d(output, self.pool_shape, ignore_border=self.ignore_border)
                pooled_pre_output = downsample.max_pool_2d(pre_output, self.pool_shape, ignore_border=self.ignore_border)
                return pooled_output, pooled_pre_output

            output = layer_fprop(input, return_output_preactivation)
            pooled_output = downsample.max_pool_2d(output, self.pool_shape, ignore_border=self.ignore_border)
            return pooled_output

        layer.fprop = MethodType(decorated_fprop, layer)
项目:keras-recommendation    作者:sonyisme    | 项目源码 | 文件源码
def get_output(self, train):
        X = self.get_input(train)
        X = theano.tensor.reshape(X, (X.shape[0], X.shape[1], X.shape[2], 1)).dimshuffle(0, 1, 3, 2)
        output = downsample.max_pool_2d(X, ds=self.poolsize, st=self.st, ignore_border=self.ignore_border)
        output = output.dimshuffle(0, 1, 3, 2)
        return theano.tensor.reshape(output, (output.shape[0], output.shape[1], output.shape[2]))
项目:keras-recommendation    作者:sonyisme    | 项目源码 | 文件源码
def get_output(self, train):
        X = self.get_input(train)
        output = downsample.max_pool_2d(X, ds=self.poolsize, st=self.stride, ignore_border=self.ignore_border)
        return output
项目:GT-Deep-Learning-for-Sign-Language-Recognition    作者:payamsiyari    | 项目源码 | 文件源码
def model(X, w, w2, w3, w35, w4, p_drop_conv, p_drop_hidden):
    l1a = rectify(conv2d(X, w, border_mode='full'))
    #print "l1a",l1a.type
    #print "l1a",l1a.shape.eval()
    l1 = max_pool_2d(l1a, (2, 2))
    #print "l1",l1.get_value().shape
    #l1 = dropout(l1, p_drop_conv)

    l2a = rectify(conv2d(l1, w2))
    #print "l2a",l2a.get_value().shape
    l2 = max_pool_2d(l2a, (2, 2))
    #print "l2",l2.get_value().shape
    #l2 = dropout(l2, p_drop_conv)

    l3 = rectify(conv2d(l2, w3))
    #print "l3",l3.get_value().shape
    #l3 = max_pool_2d(l3a, (1, 1))
    #l3 = dropout(l3, p_drop_conv)

    l35a = rectify(conv2d(l3, w35))
    #print "l35a",l35a.get_value().shape
    l35b = max_pool_2d(l35a, (2, 2))
    #print "l35b",l35b.get_value().shape
    l35 = T.flatten(l35b, outdim=2)
    #print "l35",l35.get_value().shape
    #l35 = dropout(l35, p_drop_conv)

    l4 = rectify(T.dot(l35, w4))
    #print "l4",l4.get_value().shape
    #l4 = dropout(l4, p_drop_hidden)

    pyx = softmax(T.dot(l4, w_o))
    return l1, l2, l3, l35, l4, pyx
项目:DL-Benchmarks    作者:DL-Benchmarks    | 项目源码 | 文件源码
def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2),
                 stride=(1, 1)):
        """
        Allocate a LeNetConvPoolLayer with shared variable internal parameters.
        """

        assert image_shape[1] == filter_shape[1]
        self.input = input
        fan_in = np.prod(filter_shape[1:])
        fan_out = (filter_shape[0] * np.prod(filter_shape[2:]) /
                   np.prod(poolsize))
        W_bound = np.sqrt(6. / (fan_in + fan_out))
        self.W = theano.shared(
            np.asarray(
                rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
                dtype=theano.config.floatX
            ),
            borrow=True
        )

        b_values = np.zeros((filter_shape[0],), dtype=theano.config.floatX)
        self.b = theano.shared(value=b_values, borrow=True)

        conv_out = conv.conv2d(
            input=input,
            filters=self.W,
            filter_shape=filter_shape,
            image_shape=image_shape,
            subsample=stride
        )

        pooled_out = downsample.max_pool_2d(
            input=conv_out,
            ds=poolsize,
            ignore_border=True
        )
        self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
项目:DeepRepICCV2015    作者:tomrunia    | 项目源码 | 文件源码
def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)):

        assert image_shape[1] == filter_shape[1]
        self.input = input

        # there are "num input feature maps * filter height * filter width"
        # inputs to each hidden unit
        fan_in = numpy.prod(filter_shape[1:])
        # each unit in the lower layer receives a gradient from:
        # "num output feature maps * filter height * filter width" /
        #   pooling size
        fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) /
                   numpy.prod(poolsize))
        # initialize weights with random weights
        W_bound = numpy.sqrt(6. / (fan_in + fan_out))
        self.W = theano.shared(numpy.asarray(
            rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
            dtype=theano.config.floatX),
                               borrow=True)

        # the bias is a 1D tensor -- one bias per output feature map
        b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
        self.b = theano.shared(value=b_values, borrow=True)

        # convolve input feature maps with filters
        conv_out = conv.conv2d(input=input, filters=self.W,
                filter_shape=filter_shape, image_shape=image_shape)

        # downsample each feature map individually, using maxpooling
        pooled_out = downsample.max_pool_2d(input=conv_out,
                                            ds=poolsize, ignore_border=True)

        self.output = T.maximum(0.0, pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))

        # store parameters of this layer
        self.params = [self.W, self.b]
项目:jointEE-NN    作者:anoperson    | 项目源码 | 文件源码
def LeNetConvPoolLayer(inps, feature_map, batch, length, window, dim, prefix, params, names):
    fan_in = window * dim
    fan_out = feature_map * window * dim / (length - window + 1)

    filter_shape = (feature_map, 1, window, dim)
    image_shape = (batch, 1, length, dim)
    pool_size = (length - window + 1, 1)

    #if non_linear=="none" or non_linear=="relu":
    #    conv_W = theano.shared(0.2 * numpy.random.uniform(low=-1.0,high=1.0,\
    #                            size=filter_shape).astype(theano.config.floatX))

    #else:
    #    W_bound = numpy.sqrt(6. / (fan_in + fan_out))
    #    conv_W = theano.shared(numpy.random.uniform(low=-W_bound,high=W_bound,\
    #                            size=filter_shape).astype(theano.config.floatX))

    W_bound = numpy.sqrt(6. / (fan_in + fan_out))
    conv_W = theano.shared(numpy.random.uniform(low=-W_bound,high=W_bound,\
                            size=filter_shape).astype(theano.config.floatX))

    conv_b = theano.shared(numpy.zeros(filter_shape[0], dtype=theano.config.floatX))

    # bundle
    params += [ conv_W, conv_b ]
    names += [ prefix + '_conv_W_' + str(window), prefix + '_conv_b_' + str(window) ]

    conv_out = conv.conv2d(input=inps, filters=conv_W, filter_shape=filter_shape, image_shape=image_shape)


    conv_out_act = T.tanh(conv_out + conv_b.dimshuffle('x', 0, 'x', 'x'))
    conv_output = downsample.max_pool_2d(input=conv_out_act, ds=pool_size, ignore_border=True)

    return conv_output.flatten(2)
项目:DBQA-KBQA    作者:Lucien-qiang    | 项目源码 | 文件源码
def output_func(self, input):
    # In input we get a tensor (batch_size, nwords, ndim)
    return downsample.max_pool_2d(input=input, ds=self.pool_size, ignore_border=True)
项目:neural-networks-and-deep-learning    作者:skylook    | 项目源码 | 文件源码
def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
        self.inpt = inpt.reshape(self.image_shape)
        conv_out = conv.conv2d(
            input=self.inpt, filters=self.w, filter_shape=self.filter_shape,
            image_shape=self.image_shape)
        pooled_out = downsample.max_pool_2d(
            input=conv_out, ds=self.poolsize, ignore_border=True)
        self.output = self.activation_fn(
            pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
        self.output_dropout = self.output # no dropout in the convolutional layers
项目:DEEP-CLICK-MODEL    作者:THUIR    | 项目源码 | 文件源码
def output_func(self, input):
        # In input we get a tensor (batch_size, nwords, ndim)
        return downsample.max_pool_2d(input=input, ds=self.pool_size, ignore_border=True)
项目:DeepLearning-On-Tweets    作者:ydj0604    | 项目源码 | 文件源码
def predict(self, new_data, batch_size):
        img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
        conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        if self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
项目:DeepAestheticLearning    作者:anhad13    | 项目源码 | 文件源码
def model(X, w, w2, w3, w4, w_o, p_drop_conv, p_drop_hidden):
    l1a = rectify(conv2d(X, w, border_mode='full'))
    l1 = max_pool_2d(l1a, (2, 2))
    l1 = dropout(l1, p_drop_conv)
    l2a = rectify(conv2d(l1, w2))
    l2 = max_pool_2d(l2a, (2, 2))
    l2 = dropout(l2, p_drop_conv)
    l3a = rectify(conv2d(l2, w3))
    l3b = max_pool_2d(l3a, (2, 2))
    l3 = T.flatten(l3b, outdim=2)
    l3 = dropout(l3, p_drop_conv)
    l4 = rectify(T.dot(l3, w4))
    l4 = dropout(l4, p_drop_hidden)
    pyx = softmax(T.dot(l4, w_o))
    return l1, l2, l3, l4, pyx
项目:textGAN_public    作者:dreasysnail    | 项目源码 | 文件源码
def op(self, state):
        X = self.l_in.op(state=state)
        return max_pool_2d(X, self.shape)
项目:personality-detection    作者:SenticNet    | 项目源码 | 文件源码
def set_input(self, input):
        # convolve input feature maps with filters
        conv_out = conv.conv2d(input=input, filters=self.W,filter_shape=self.filter_shape, image_shape=self.image_shape)
        if self.non_linear=="tanh":
            conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        elif self.non_linear=="relu":
            conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
            output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
        else:
            pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
            output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        return output
项目:KEHNN    作者:MarkWuNLP    | 项目源码 | 文件源码
def predict(self, lnew_data, rnew_data):
        """
        predict for new data
        """
        lconv_out = conv.conv2d(input=lnew_data, filters=self.W)
        rconv_out = conv.conv2d(input=rnew_data, filters=self.W)
        lconv_out_tanh = T.tanh(lconv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
        rconv_out_tanh = T.tanh(rconv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
        loutput = downsample.max_pool_2d(input=lconv_out_tanh, ds=self.poolsize, ignore_border=True, mode="max")
        routput = downsample.max_pool_2d(input=rconv_out_tanh, ds=self.poolsize, ignore_border=True, mode="max")
        return loutput, routput
项目:deep-coref    作者:clarkkev    | 项目源码 | 文件源码
def get_output(self, train=False):
        X = self.get_input(train)
        X = T.reshape(X, (X.shape[0], X.shape[1], X.shape[2], 1)).dimshuffle(0, 2, 1, 3)
        output = downsample.max_pool_2d(X, ds=self.pool_size, st=self.st, ignore_border=self.ignore_border)
        output = output.dimshuffle(0, 2, 1, 3)
        return T.reshape(output, (output.shape[0], output.shape[1], output.shape[2]))
项目:deep-coref    作者:clarkkev    | 项目源码 | 文件源码
def get_output(self, train=False):
        X = self.get_input(train)
        output = downsample.max_pool_2d(X, ds=self.pool_size, st=self.stride, ignore_border=self.ignore_border)
        return output
项目:deep-hashtagprediction    作者:jderiu    | 项目源码 | 文件源码
def output_func(self, input):
    return downsample.max_pool_2d(input, ds=self.maxpool_shape, ignore_border=self.ig_bor,st=self.st)
项目:deep-hashtagprediction    作者:jderiu    | 项目源码 | 文件源码
def output_func(self, input):
    # In input we get a tensor (batch_size, nwords, ndim)
    return downsample.max_pool_2d(input=input, ds=self.pool_size, ignore_border=True)
项目:NeuralSentenceOrdering    作者:FudanNLP    | 项目源码 | 文件源码
def get_output(self, train=False):
        #output = K.pool2d(x = train, pool_size = (self.pool_length,1), 
        #                  border_mode = self.border_mode, pool_mode='max')
        pool_size = (self.pool_length, 1)
        strides = (self.pool_length, 1)
        ignore_border = True
        padding = (0, 0)
        output = downsample.max_pool_2d(train, ds=pool_size, st=strides,
                                          ignore_border=ignore_border,
                                          padding=padding,
                                          mode='max')
        return output
项目:Buffe    作者:bentzinir    | 项目源码 | 文件源码
def step(self, input):

        # self.input = input

        # convolve input feature maps with filters
        # conv_out = t.conv.conv2d(
        #     input=input,
        #     filters=self.W,
        #     filter_shape=filter_shape,
        #     image_shape=image_shape
        # )

        conv_out = conv.conv2d(
            input=input,
            filters=self.W,
            filter_shape=self.filter_shape,
            image_shape=self.image_shape,
            border_mode=self.border_mode
        )
        # downsample each feature map individually, using maxpooling
        pooled_out = downsample.max_pool_2d(
            input=conv_out,
            ds=self.poolsize,
            ignore_border=True,
        )

        # add the bias term. Since the bias is a vector (1D array), we first
        # reshape it to a tensor of shape (1, n_filters, 1, 1). Each bias will
        # thus be broadcasted across mini-batches and feature map
        # width & height
        output = tt.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))

        return output
项目:RecommendationSystem    作者:TURuibo    | 项目源码 | 文件源码
def get_output(self, train):
        X = self.get_input(train)
        X = theano.tensor.reshape(X, (X.shape[0], X.shape[1], X.shape[2], 1)).dimshuffle(0, 1, 3, 2)
        output = downsample.max_pool_2d(X, ds=self.poolsize, st=self.st, ignore_border=self.ignore_border)
        output = output.dimshuffle(0, 1, 3, 2)
        return theano.tensor.reshape(output, (output.shape[0], output.shape[1], output.shape[2]))
项目:RecommendationSystem    作者:TURuibo    | 项目源码 | 文件源码
def get_output(self, train):
        X = self.get_input(train)
        output = downsample.max_pool_2d(X, ds=self.poolsize, st=self.stride, ignore_border=self.ignore_border)
        return output
项目:TACNTN    作者:MarkWuNLP    | 项目源码 | 文件源码
def predict(self, lnew_data, rnew_data):
        """
        predict for new data
        """
        lconv_out = conv.conv2d(input=lnew_data, filters=self.W)
        rconv_out = conv.conv2d(input=rnew_data, filters=self.W)
        lconv_out_tanh = T.tanh(lconv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
        rconv_out_tanh = T.tanh(rconv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
        loutput = downsample.max_pool_2d(input=lconv_out_tanh, ds=self.poolsize, ignore_border=True, mode="max")
        routput = downsample.max_pool_2d(input=rconv_out_tanh, ds=self.poolsize, ignore_border=True, mode="max")
        return loutput, routput