MathJax - Ajax的MathML公式显示方案


Apache
跨平台
JavaScript

软件简介

MathJax 是一个开源的基于 Ajax 的数学公式显示的解决方案,结合多种先进的Web技术,支持主流的浏览器。MathJax 根据页面中定义的
LaTex 数据,生成对应的数学公式。

主要特点:

  • High-quality display of LaTeX and MathML math notation in HTML pages
  • Supported in most browsers with no plug-ins, extra fonts or special setup for the reader
  • Easy for authors, flexible for publishers, extensible for developers
  • Supports math accessibility, cut and paste interoperability and other advanced functionality
  • Powerful API for integration with other web applications

例如下面的LaTex数据可以生成图形:

The Lorenz Equations

\[\begin{matrix}
\dot{x} & = & \sigma(y-x) \\
\dot{y} & = & \rho x - y - xz \\
\dot{z} & = & -\beta z + xy
\end{matrix} \]

The Cauchy-Schwarz Inequality


\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2
\right) \left( \sum_{k=1}^n b_k^2 \right) \]

A Cross Product Formula


\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0
\\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} &
0
\end{vmatrix} \]

The probability of getting \\(k\\) heads when flipping \\(n\\) coins is:

\[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]

An Identity of Ramanujan

\[ \frac{1}{(\sqrt{\phi \sqrt{5}}-\phi) e^{\frac25 \pi}} =
1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]