我使用html5 canvas元素在浏览器中调整图像大小。事实证明,质量很低。我发现了这一点:在缩放时禁用插值,但它无助于提高质量。
下面是我的css和js代码,以及用Photoshop调用并在canvas API中缩放的图像。
在浏览器中缩放图像时,我该怎么做才能获得最佳质量?
注意:我想将大图像缩小为小图像,修改画布中的颜色并将结果从画布发送到服务器。
CSS:
canvas, img { image-rendering: optimizeQuality; image-rendering: -moz-crisp-edges; image-rendering: -webkit-optimize-contrast; image-rendering: optimize-contrast; -ms-interpolation-mode: nearest-neighbor; }
JS:
var $img = $('<img>'); var $originalCanvas = $('<canvas>'); $img.load(function() { var originalContext = $originalCanvas[0].getContext('2d'); originalContext.imageSmoothingEnabled = false; originalContext.webkitImageSmoothingEnabled = false; originalContext.mozImageSmoothingEnabled = false; originalContext.drawImage(this, 0, 0, 379, 500); });
这是我使用的功能:
function resizeCanvasImage(img, canvas, maxWidth, maxHeight) { var imgWidth = img.width, imgHeight = img.height; var ratio = 1, ratio1 = 1, ratio2 = 1; ratio1 = maxWidth / imgWidth; ratio2 = maxHeight / imgHeight; // Use the smallest ratio that the image best fit into the maxWidth x maxHeight box. if (ratio1 < ratio2) { ratio = ratio1; } else { ratio = ratio2; } var canvasContext = canvas.getContext("2d"); var canvasCopy = document.createElement("canvas"); var copyContext = canvasCopy.getContext("2d"); var canvasCopy2 = document.createElement("canvas"); var copyContext2 = canvasCopy2.getContext("2d"); canvasCopy.width = imgWidth; canvasCopy.height = imgHeight; copyContext.drawImage(img, 0, 0); // init canvasCopy2.width = imgWidth; canvasCopy2.height = imgHeight; copyContext2.drawImage(canvasCopy, 0, 0, canvasCopy.width, canvasCopy.height, 0, 0, canvasCopy2.width, canvasCopy2.height); var rounds = 2; var roundRatio = ratio * rounds; for (var i = 1; i <= rounds; i++) { console.log("Step: "+i); // tmp canvasCopy.width = imgWidth * roundRatio / i; canvasCopy.height = imgHeight * roundRatio / i; copyContext.drawImage(canvasCopy2, 0, 0, canvasCopy2.width, canvasCopy2.height, 0, 0, canvasCopy.width, canvasCopy.height); // copy back canvasCopy2.width = imgWidth * roundRatio / i; canvasCopy2.height = imgHeight * roundRatio / i; copyContext2.drawImage(canvasCopy, 0, 0, canvasCopy.width, canvasCopy.height, 0, 0, canvasCopy2.width, canvasCopy2.height); } // end for // copy back to canvas canvas.width = imgWidth * roundRatio / rounds; canvas.height = imgHeight * roundRatio / rounds; canvasContext.drawImage(canvasCopy2, 0, 0, canvasCopy2.width, canvasCopy2.height, 0, 0, canvas.width, canvas.height); }
由于你的问题是缩小图像,因此谈论插值(即创建像素)毫无意义。这里的问题是下采样。
要对图像进行降采样,我们需要将原始图像中的每个p * p像素正方形变成目标图像中的单个像素。
出于性能原因,浏览器进行了非常简单的下采样:要生成较小的图像,它们将仅在源中选择一个像素并将其值用作目标。这会“忘记”一些细节并增加噪音。
但是有一个例外:由于2X图像下采样的计算非常简单(平均4个像素即可制作一个),并且用于视网膜/ HiDPI像素,因此这种情况得到了正确处理-浏览器确实使用4个像素来制作一-。
但是…如果你多次使用2X下采样,则会遇到连续的舍入误差会增加过多噪声的问题。 更糟糕的是,你将无法始终将大小调整为2的幂,并且将大小调整为最接近的幂+最后一次调整大小会非常嘈杂。
你要寻找的是像素完美的下采样,即:对图像进行重新采样,无论尺寸如何,都将考虑所有输入像素。 为此,我们必须针对每个输入像素计算其对一个,两个或四个目标像素的贡献,具体取决于输入像素的缩放投影是否恰好在目标像素内部,与X边界,Y边界或两者重叠。 (一个计划在这里会很好,但是我没有一个。)
这是一个画布比例与我的像素完美比例(在1/3缩放比例下)的示例。
请注意,图片可能会在浏览器中缩放,并以.jpeg格式化。 但是,我们看到的噪音要少得多,尤其是在袋熊后面的草丛中以及在其右边的树枝中。皮毛上的噪音使它更具反差,但看起来他像白发(与原始图片不同)。 正确的图像不那么吸引眼球,但绝对更好。
// scales the image by (float) scale < 1 // returns a canvas containing the scaled image. function downScaleImage(img, scale) { var imgCV = document.createElement('canvas'); imgCV.width = img.width; imgCV.height = img.height; var imgCtx = imgCV.getContext('2d'); imgCtx.drawImage(img, 0, 0); return downScaleCanvas(imgCV, scale); } // scales the canvas by (float) scale < 1 // returns a new canvas containing the scaled image. function downScaleCanvas(cv, scale) { if (!(scale < 1) || !(scale > 0)) throw ('scale must be a positive number <1 '); var sqScale = scale * scale; // square scale = area of source pixel within target var sw = cv.width; // source image width var sh = cv.height; // source image height var tw = Math.floor(sw * scale); // target image width var th = Math.floor(sh * scale); // target image height var sx = 0, sy = 0, sIndex = 0; // source x,y, index within source array var tx = 0, ty = 0, yIndex = 0, tIndex = 0; // target x,y, x,y index within target array var tX = 0, tY = 0; // rounded tx, ty var w = 0, nw = 0, wx = 0, nwx = 0, wy = 0, nwy = 0; // weight / next weight x / y // weight is weight of current source point within target. // next weight is weight of current source point within next target's point. var crossX = false; // does scaled px cross its current px right border ? var crossY = false; // does scaled px cross its current px bottom border ? var sBuffer = cv.getContext('2d'). getImageData(0, 0, sw, sh).data; // source buffer 8 bit rgba var tBuffer = new Float32Array(3 * tw * th); // target buffer Float32 rgb var sR = 0, sG = 0, sB = 0; // source's current point r,g,b /* untested ! var sA = 0; //source alpha */ for (sy = 0; sy < sh; sy++) { ty = sy * scale; // y src position within target tY = 0 | ty; // rounded : target pixel's y yIndex = 3 * tY * tw; // line index within target array crossY = (tY != (0 | ty + scale)); if (crossY) { // if pixel is crossing botton target pixel wy = (tY + 1 - ty); // weight of point within target pixel nwy = (ty + scale - tY - 1); // ... within y+1 target pixel } for (sx = 0; sx < sw; sx++, sIndex += 4) { tx = sx * scale; // x src position within target tX = 0 | tx; // rounded : target pixel's x tIndex = yIndex + tX * 3; // target pixel index within target array crossX = (tX != (0 | tx + scale)); if (crossX) { // if pixel is crossing target pixel's right wx = (tX + 1 - tx); // weight of point within target pixel nwx = (tx + scale - tX - 1); // ... within x+1 target pixel } sR = sBuffer[sIndex ]; // retrieving r,g,b for curr src px. sG = sBuffer[sIndex + 1]; sB = sBuffer[sIndex + 2]; /* !! untested : handling alpha !! sA = sBuffer[sIndex + 3]; if (!sA) continue; if (sA != 0xFF) { sR = (sR * sA) >> 8; // or use /256 instead ?? sG = (sG * sA) >> 8; sB = (sB * sA) >> 8; } */ if (!crossX && !crossY) { // pixel does not cross // just add components weighted by squared scale. tBuffer[tIndex ] += sR * sqScale; tBuffer[tIndex + 1] += sG * sqScale; tBuffer[tIndex + 2] += sB * sqScale; } else if (crossX && !crossY) { // cross on X only w = wx * scale; // add weighted component for current px tBuffer[tIndex ] += sR * w; tBuffer[tIndex + 1] += sG * w; tBuffer[tIndex + 2] += sB * w; // add weighted component for next (tX+1) px nw = nwx * scale tBuffer[tIndex + 3] += sR * nw; tBuffer[tIndex + 4] += sG * nw; tBuffer[tIndex + 5] += sB * nw; } else if (crossY && !crossX) { // cross on Y only w = wy * scale; // add weighted component for current px tBuffer[tIndex ] += sR * w; tBuffer[tIndex + 1] += sG * w; tBuffer[tIndex + 2] += sB * w; // add weighted component for next (tY+1) px nw = nwy * scale tBuffer[tIndex + 3 * tw ] += sR * nw; tBuffer[tIndex + 3 * tw + 1] += sG * nw; tBuffer[tIndex + 3 * tw + 2] += sB * nw; } else { // crosses both x and y : four target points involved // add weighted component for current px w = wx * wy; tBuffer[tIndex ] += sR * w; tBuffer[tIndex + 1] += sG * w; tBuffer[tIndex + 2] += sB * w; // for tX + 1; tY px nw = nwx * wy; tBuffer[tIndex + 3] += sR * nw; tBuffer[tIndex + 4] += sG * nw; tBuffer[tIndex + 5] += sB * nw; // for tX ; tY + 1 px nw = wx * nwy; tBuffer[tIndex + 3 * tw ] += sR * nw; tBuffer[tIndex + 3 * tw + 1] += sG * nw; tBuffer[tIndex + 3 * tw + 2] += sB * nw; // for tX + 1 ; tY +1 px nw = nwx * nwy; tBuffer[tIndex + 3 * tw + 3] += sR * nw; tBuffer[tIndex + 3 * tw + 4] += sG * nw; tBuffer[tIndex + 3 * tw + 5] += sB * nw; } } // end for sx } // end for sy // create result canvas var resCV = document.createElement('canvas'); resCV.width = tw; resCV.height = th; var resCtx = resCV.getContext('2d'); var imgRes = resCtx.getImageData(0, 0, tw, th); var tByteBuffer = imgRes.data; // convert float32 array into a UInt8Clamped Array var pxIndex = 0; // for (sIndex = 0, tIndex = 0; pxIndex < tw * th; sIndex += 3, tIndex += 4, pxIndex++) { tByteBuffer[tIndex] = Math.ceil(tBuffer[sIndex]); tByteBuffer[tIndex + 1] = Math.ceil(tBuffer[sIndex + 1]); tByteBuffer[tIndex + 2] = Math.ceil(tBuffer[sIndex + 2]); tByteBuffer[tIndex + 3] = 255; } // writing result to canvas. resCtx.putImageData(imgRes, 0, 0); return resCV; }
这是非常内存的贪婪,因为需要浮点缓冲区来存储目标图像的中间值(->如果我们计算结果画布,则在此算法中使用的是源图像的6倍内存)。 这也是非常昂贵的,因为无论目标大小如何都使用每个源像素,而且我们必须为getImageData / putImageDate付费,这也相当慢。 但是在这种情况下,没有比处理每个源值更快的方法了,情况也还不错:对于我的740 * 556袋熊的图像,处理时间在30到40毫秒之间。