我想制作一个像这样的热图(显示在FlowingData上): 热图
源数据在这里,但是可以使用随机数据和标签,即
import numpy column_labels = list('ABCD') row_labels = list('WXYZ') data = numpy.random.rand(4,4)
在matplotlib中制作热图非常简单:
from matplotlib import pyplot as plt heatmap = plt.pcolor(data)
我什至发现了一个看起来正确的colormap参数:heatmap = plt.pcolor(data, cmap=matplotlib.cm.Blues)
heatmap = plt.pcolor(data, cmap=matplotlib.cm.Blues)
但是除此之外,我不知道如何显示列和行的标签以及如何以正确的方向显示数据(起源在左上角而不是左下角)。
尝试操作heatmap.axes(例如heatmap.axes.set_xticklabels = column_labels)都失败了。我在这里想念什么?
heatmap.axes
heatmap.axes.set_xticklabels = column_labels
这很晚了,但是这是我对flowingdata NBA热图的python实现。
已更新:2014/1/4:谢谢大家
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # ------------------------------------------------------------------------ # Filename : heatmap.py # Date : 2013-04-19 # Updated : 2014-01-04 # Author : @LotzJoe >> Joe Lotz # Description: My attempt at reproducing the FlowingData graphic in Python # Source : http://flowingdata.com/2010/01/21/how-to-make-a-heatmap-a-quick-and-easy-solution/ # # Other Links: # http://stackoverflow.com/questions/14391959/heatmap-in-matplotlib-with-pcolor # # ------------------------------------------------------------------------ import matplotlib.pyplot as plt import pandas as pd from urllib2 import urlopen import numpy as np %pylab inline page = urlopen("http://datasets.flowingdata.com/ppg2008.csv") nba = pd.read_csv(page, index_col=0) # Normalize data columns nba_norm = (nba - nba.mean()) / (nba.max() - nba.min()) # Sort data according to Points, lowest to highest # This was just a design choice made by Yau # inplace=False (default) ->thanks SO user d1337 nba_sort = nba_norm.sort('PTS', ascending=True) nba_sort['PTS'].head(10) # Plot it out fig, ax = plt.subplots() heatmap = ax.pcolor(nba_sort, cmap=plt.cm.Blues, alpha=0.8) # Format fig = plt.gcf() fig.set_size_inches(8, 11) # turn off the frame ax.set_frame_on(False) # put the major ticks at the middle of each cell ax.set_yticks(np.arange(nba_sort.shape[0]) + 0.5, minor=False) ax.set_xticks(np.arange(nba_sort.shape[1]) + 0.5, minor=False) # want a more natural, table-like display ax.invert_yaxis() ax.xaxis.tick_top() # Set the labels # label source:https://en.wikipedia.org/wiki/Basketball_statistics labels = [ 'Games', 'Minutes', 'Points', 'Field goals made', 'Field goal attempts', 'Field goal percentage', 'Free throws made', 'Free throws attempts', 'Free throws percentage', 'Three-pointers made', 'Three-point attempt', 'Three-point percentage', 'Offensive rebounds', 'Defensive rebounds', 'Total rebounds', 'Assists', 'Steals', 'Blocks', 'Turnover', 'Personal foul'] # note I could have used nba_sort.columns but made "labels" instead ax.set_xticklabels(labels, minor=False) ax.set_yticklabels(nba_sort.index, minor=False) # rotate the plt.xticks(rotation=90) ax.grid(False) # Turn off all the ticks ax = plt.gca() for t in ax.xaxis.get_major_ticks(): t.tick1On = False t.tick2On = False for t in ax.yaxis.get_major_ticks(): t.tick1On = False t.tick2On = False
输出如下: 类流动数据的NBA热图
这里有一个IPython的笔记本用这些代码在这里。我从“溢出”中学到了很多东西,所以希望有人会发现它有用。