我必须使用pdfbox绘制一个饼图。
令数据为:
主题分数百分比累计分数 Sub-1 80 80 80 Sub-2 70 70150 Sub-3 65 65215 Sub-4 90 90305 Sub-5 55 55360
令半径和中心为100像素和(250,400)。
让我们取平行于x轴的初始线。 绘图的初始线条语句将为: contentStream.drawLine(250,400,350,400);
我坚持: a)在圆弧上找到与初始线相距一定角度的点的x,y坐标,以绘制半径 b)使用贝塞尔曲线在两点之间绘制圆弧。
解决问题的任何帮助将不胜感激!
根据角度在圆上找到x,y坐标是学校数学,即sin()和cos(),棘手的部分是绘制带有贝塞尔曲线的圆弧。
这是一些绘制所需饼图的代码。请注意,createSmallArc()只能在最大90°的角度下工作。如果需要更多,则必须通过绘制多个弧线来修改代码,直到返回(0,0),或者仅绘制多个切片。
createSmallArc()
(createSmallArc()由Hans Muller提供,许可证:Creative Commons Attribution 3.0。所做的更改:将原始的AS代码实现为Java。算法由AleksasRiškus提供)
public class PieChart { public static void main(String[] args) throws IOException { PDDocument doc = new PDDocument(); PDPage page = new PDPage(); doc.addPage(page); PDPageContentStream cs = new PDPageContentStream(doc, page); cs.transform(Matrix.getTranslateInstance(250, 400)); cs.setNonStrokingColor(Color.yellow); drawSlice(cs, 100, 0, 80); cs.fill(); cs.setNonStrokingColor(Color.red); drawSlice(cs, 100, 80, 150); cs.fill(); cs.setNonStrokingColor(Color.green); drawSlice(cs, 100, 150, 215); cs.fill(); cs.setNonStrokingColor(Color.blue); drawSlice(cs, 100, 215, 305); cs.fill(); cs.setNonStrokingColor(Color.ORANGE); drawSlice(cs, 100, 305, 360); cs.fill(); cs.close(); doc.save("piechart.pdf"); doc.close(); } private static void drawSlice(PDPageContentStream cs, float rad, float startDeg, float endDeg) throws IOException { cs.moveTo(0, 0); List<Float> smallArc = createSmallArc(rad, Math.toRadians(startDeg), Math.toRadians(endDeg)); cs.lineTo(smallArc.get(0), smallArc.get(1)); cs.curveTo(smallArc.get(2), smallArc.get(3), smallArc.get(4), smallArc.get(5), smallArc.get(6), smallArc.get(7)); cs.closePath(); } /** * From https://hansmuller-flex.blogspot.com/2011/10/more-about-approximating-circular-arcs.html * * Cubic bezier approximation of a circular arc centered at the origin, * from (radians) a1 to a2, where a2-a1 < pi/2. The arc's radius is r. * * Returns a list with 4 points, where x1,y1 and x4,y4 are the arc's end points * and x2,y2 and x3,y3 are the cubic bezier's control points. * * This algorithm is based on the approach described in: * Aleksas Riškus, "Approximation of a Cubic Bezier Curve by Circular Arcs and Vice Versa," * Information Technology and Control, 35(4), 2006 pp. 371-378. */ private static List<Float> createSmallArc(double r, double a1, double a2) { // Compute all four points for an arc that subtends the same total angle // but is centered on the X-axis double a = (a2 - a1) / 2; double x4 = r * Math.cos(a); double y4 = r * Math.sin(a); double x1 = x4; double y1 = -y4; double q1 = x1*x1 + y1*y1; double q2 = q1 + x1*x4 + y1*y4; double k2 = 4/3d * (Math.sqrt(2 * q1 * q2) - q2) / (x1 * y4 - y1 * x4); double x2 = x1 - k2 * y1; double y2 = y1 + k2 * x1; double x3 = x2; double y3 = -y2; // Find the arc points' actual locations by computing x1,y1 and x4,y4 // and rotating the control points by a + a1 double ar = a + a1; double cos_ar = Math.cos(ar); double sin_ar = Math.sin(ar); List<Float> list = new ArrayList<Float>(); list.add((float) (r * Math.cos(a1))); list.add((float) (r * Math.sin(a1))); list.add((float) (x2 * cos_ar - y2 * sin_ar)); list.add((float) (x2 * sin_ar + y2 * cos_ar)); list.add((float) (x3 * cos_ar - y3 * sin_ar)); list.add((float) (x3 * sin_ar + y3 * cos_ar)); list.add((float) (r * Math.cos(a2))); list.add((float) (r * Math.sin(a2))); return list; } }