小编典典

熊猫数据框中选定列和计数中值的唯一组合

python

我将数据存储在pandas数据框中,如下所示:

df1 = pd.DataFrame({'A':['yes','yes','yes','yes','no','no','yes','yes','yes','no'],
                   'B':['yes','no','no','no','yes','yes','no','yes','yes','no']})

所以,我的数据看起来像这样

----------------------------
index         A        B
0           yes      yes
1           yes       no
2           yes       no
3           yes       no
4            no      yes
5            no      yes
6           yes       no
7           yes      yes
8           yes      yes
9            no       no
-----------------------------

我想将其转换为另一个数据框。预期的输出可以在以下python脚本中显示:

output = pd.DataFrame({'A':['no','no','yes','yes'],'B':['no','yes','no','yes'],'count':[1,2,4,3]})

因此,我的预期输出如下所示

--------------------------------------------
index      A       B       count
--------------------------------------------
0         no       no        1
1         no      yes        2
2        yes       no        4
3        yes      yes        3
--------------------------------------------

实际上,我可以使用以下命令来找到所有组合并对其进行计数: mytable = df1.groupby(['A','B']).size()

但是,事实证明,此类组合在单个列中。我想将组合中的每个值分隔到不同的列中,并且还要为计数结果增加一列。有可能这样做吗?请问您有什么建议吗?先感谢您。


阅读 161

收藏
2020-12-20

共1个答案

小编典典

你可以groupby上的cols“A”和“B”和呼叫size,然后reset_indexrename生成列:

In [26]:

df1.groupby(['A','B']).size().reset_index().rename(columns={0:'count'})
Out[26]:
     A    B  count
0   no   no      1
1   no  yes      2
2  yes   no      4
3  yes  yes      3

更新

简要说明一下,通过将2列分组,将A和B值相同的行分组,我们称之为size返回唯一组数:

In[202]:
df1.groupby(['A','B']).size()

Out[202]: 
A    B  
no   no     1
     yes    2
yes  no     4
     yes    3
dtype: int64

现在,要还原分组的列,我们调用reset_index

In[203]:
df1.groupby(['A','B']).size().reset_index()

Out[203]: 
     A    B  0
0   no   no  1
1   no  yes  2
2  yes   no  4
3  yes  yes  3

这将还原索引,但是大小聚合将变成生成的column 0,因此我们必须重命名此名称:

In[204]:
df1.groupby(['A','B']).size().reset_index().rename(columns={0:'count'})

Out[204]: 
     A    B  count
0   no   no      1
1   no  yes      2
2  yes   no      4
3  yes  yes      3

groupby确实接受了as_index我们可以设置为的arg
False因此它不会使分组的列成为索引,但是这会生成a,series并且您仍然必须还原索引,依此类推....:

In[205]:
df1.groupby(['A','B'], as_index=False).size()

Out[205]: 
A    B  
no   no     1
     yes    2
yes  no     4
     yes    3
dtype: int64
2020-12-20