小编典典

比较Pandas DataFrame中的上一行值

python

import pandas as pd
data={'col1':[1,3,3,1,2,3,2,2]}
df=pd.DataFrame(data,columns=['col1'])
print df


         col1  
    0     1          
    1     3          
    2     3          
    3     1          
    4     2          
    5     3          
    6     2          
    7     2

我有以下Pandas DataFrame,我想创建另一列来比较col1的前一行,以查看它们是否相等。最好的方法是什么?就像下面的DataFrame。谢谢

    col1  match  
0     1   False     
1     3   False     
2     3   True     
3     1   False     
4     2   False     
5     3   False     
6     2   False     
7     2   True

阅读 176

收藏
2020-12-20

共1个答案

小编典典

您需要eq使用shift

df['match'] = df.col1.eq(df.col1.shift())
print (df)
   col1  match
0     1  False
1     3  False
2     3   True
3     1  False
4     2  False
5     3  False
6     2  False
7     2   True

或改为eq使用==,但是在大型DataFrame中,它会稍微慢一些:

df['match'] = df.col1 == df.col1.shift()
print (df)
   col1  match
0     1  False
1     3  False
2     3   True
3     1  False
4     2  False
5     3  False
6     2  False
7     2   True

时间

import pandas as pd
data={'col1':[1,3,3,1,2,3,2,2]}
df=pd.DataFrame(data,columns=['col1'])
print (df)
#[80000 rows x 1 columns]
df = pd.concat([df]*10000).reset_index(drop=True)

df['match'] = df.col1 == df.col1.shift()
df['match1'] = df.col1.eq(df.col1.shift())
print (df)

In [208]: %timeit df.col1.eq(df.col1.shift())
The slowest run took 4.83 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 933 µs per loop

In [209]: %timeit df.col1 == df.col1.shift()
1000 loops, best of 3: 1 ms per loop
2020-12-20