小编典典

Python向量化嵌套循环

python

在寻找和理解pythonic方法以优化嵌套的for循环中的以下数组操作时,我将不胜感激:

def _func(a, b, radius):
    "Return 0 if a>b, otherwise return 1"
    if distance.euclidean(a, b) < radius:
        return 1
    else:
        return 0

def _make_mask(volume, roi, radius):
    mask = numpy.zeros(volume.shape)
    for x in range(volume.shape[0]):
        for y in range(volume.shape[1]):
            for z in range(volume.shape[2]):
                mask[x, y, z] = _func((x, y, z), roi, radius)
    return mask

其中volume.shape(182、218、200)和roi.shape(3)都是ndarray类型;并且radiusint


阅读 178

收藏
2020-12-20

共1个答案

小编典典

方法1

这是向量化方法-

m,n,r = volume.shape
x,y,z = np.mgrid[0:m,0:n,0:r]
X = x - roi[0]
Y = y - roi[1]
Z = z - roi[2]
mask = X**2 + Y**2 + Z**2 < radius**2

可能的改进:我们可以通过numexpr模块加快最后一步的速度-

import numexpr as ne

mask = ne.evaluate('X**2 + Y**2 + Z**2 < radius**2')

方法#2

我们还可以逐步构建与形状参数相对应的三个范围,并在运行中对三个元素进行减法运算,roi而无需像之前使用那样实际创建网格np.mgrid。通过broadcasting出于效率目的使用会受益。实现看起来像这样-

m,n,r = volume.shape
vals = ((np.arange(m)-roi[0])**2)[:,None,None] + \
       ((np.arange(n)-roi[1])**2)[:,None] + ((np.arange(r)-roi[2])**2)
mask = vals < radius**2

简化版:感谢@Bi Rico在这里提出改进建议,因为我们可以使用它np.ogrid以更简洁的方式执行这些操作,例如-

m,n,r = volume.shape    
x,y,z = np.ogrid[0:m,0:n,0:r]-roi
mask = (x**2+y**2+z**2) < radius**2

运行时测试

功能定义-

def vectorized_app1(volume, roi, radius):
    m,n,r = volume.shape
    x,y,z = np.mgrid[0:m,0:n,0:r]
    X = x - roi[0]
    Y = y - roi[1]
    Z = z - roi[2]
    return X**2 + Y**2 + Z**2 < radius**2

def vectorized_app1_improved(volume, roi, radius):
    m,n,r = volume.shape
    x,y,z = np.mgrid[0:m,0:n,0:r]
    X = x - roi[0]
    Y = y - roi[1]
    Z = z - roi[2]
    return ne.evaluate('X**2 + Y**2 + Z**2 < radius**2')

def vectorized_app2(volume, roi, radius):
    m,n,r = volume.shape
    vals = ((np.arange(m)-roi[0])**2)[:,None,None] + \
           ((np.arange(n)-roi[1])**2)[:,None] + ((np.arange(r)-roi[2])**2)
    return vals < radius**2

def vectorized_app2_simplified(volume, roi, radius):
    m,n,r = volume.shape    
    x,y,z = np.ogrid[0:m,0:n,0:r]-roi
    return (x**2+y**2+z**2) < radius**2

时间-

In [106]: # Setup input arrays  
     ...: volume = np.random.rand(90,110,100) # Half of original input sizes 
     ...: roi = np.random.rand(3)
     ...: radius = 3.4
     ...:

In [107]: %timeit _make_mask(volume, roi, radius)
1 loops, best of 3: 41.4 s per loop

In [108]: %timeit vectorized_app1(volume, roi, radius)
10 loops, best of 3: 62.3 ms per loop

In [109]: %timeit vectorized_app1_improved(volume, roi, radius)
10 loops, best of 3: 47 ms per loop

In [110]: %timeit vectorized_app2(volume, roi, radius)
100 loops, best of 3: 4.26 ms per loop

In [139]: %timeit vectorized_app2_simplified(volume, roi, radius)
100 loops, best of 3: 4.36 ms per loop

因此,一如既往地broadcasting显示出疯狂地 10,000x 加快原始代码速度的魔力,并且比 10x
使用即时广播的操作创建网格要好得多!

2020-12-20