如何沿着矩阵计算矩阵均值,但nan要从计算中删除值?(对于R人,请考虑na.rm = TRUE)。
nan
na.rm = TRUE
这是我的[非]工作示例:
import numpy as np dat = np.array([[1, 2, 3], [4, 5, np.nan], [np.nan, 6, np.nan], [np.nan, np.nan, np.nan]]) print(dat) print(dat.mean(1)) # [ 2. nan nan nan]
除去NaN之后,我的预期输出为:
array([ 2., 4.5, 6., nan])
我认为您想要的是一个蒙版数组:
dat = np.array([[1,2,3], [4,5,nan], [nan,6,nan], [nan,nan,nan]]) mdat = np.ma.masked_array(dat,np.isnan(dat)) mm = np.mean(mdat,axis=1) print mm.filled(np.nan) # the desired answer
编辑: 合并所有时序数据
from timeit import Timer setupstr=""" import numpy as np from scipy.stats.stats import nanmean dat = np.random.normal(size=(1000,1000)) ii = np.ix_(np.random.randint(0,99,size=50),np.random.randint(0,99,size=50)) dat[ii] = np.nan """ method1=""" mdat = np.ma.masked_array(dat,np.isnan(dat)) mm = np.mean(mdat,axis=1) mm.filled(np.nan) """ N = 2 t1 = Timer(method1, setupstr).timeit(N) t2 = Timer("[np.mean([l for l in d if not np.isnan(l)]) for d in dat]", setupstr).timeit(N) t3 = Timer("np.array([r[np.isfinite(r)].mean() for r in dat])", setupstr).timeit(N) t4 = Timer("np.ma.masked_invalid(dat).mean(axis=1)", setupstr).timeit(N) t5 = Timer("nanmean(dat,axis=1)", setupstr).timeit(N) print 'Time: %f\tRatio: %f' % (t1,t1/t1 ) print 'Time: %f\tRatio: %f' % (t2,t2/t1 ) print 'Time: %f\tRatio: %f' % (t3,t3/t1 ) print 'Time: %f\tRatio: %f' % (t4,t4/t1 ) print 'Time: %f\tRatio: %f' % (t5,t5/t1 )
返回值:
Time: 0.045454 Ratio: 1.000000 Time: 8.179479 Ratio: 179.950595 Time: 0.060988 Ratio: 1.341755 Time: 0.070955 Ratio: 1.561029 Time: 0.065152 Ratio: 1.433364