小编典典

在NLTK中保存朴素贝叶斯训练分类器

python

关于如何保存经过训练的分类器,我有些困惑。就像在其中一样,每次我想使用分类器时都要对其进行重新训练显然很糟糕而且很慢,如何保存它并在需要时再次加载它?代码如下,在此先感谢您的帮助。我正在将Python与NLTK朴素贝叶斯分类器一起使用。

classifier = nltk.NaiveBayesClassifier.train(training_set)
# look inside the classifier train method in the source code of the NLTK library

def train(labeled_featuresets, estimator=nltk.probability.ELEProbDist):
    # Create the P(label) distribution
    label_probdist = estimator(label_freqdist)
    # Create the P(fval|label, fname) distribution
    feature_probdist = {}
    return NaiveBayesClassifier(label_probdist, feature_probdist)

阅读 218

收藏
2020-12-20

共1个答案

小编典典

保存:

import pickle
f = open('my_classifier.pickle', 'wb')
pickle.dump(classifier, f)
f.close()

稍后加载:

import pickle
f = open('my_classifier.pickle', 'rb')
classifier = pickle.load(f)
f.close()
2020-12-20