小编典典

可视化决策树(来自scikit-learn的示例)

python

我是使用sciki-learn的菜鸟,所以请多多包涵。

我正在查看示例:http : //scikit-learn.org/stable/modules/tree.html#tree

from sklearn.datasets import load_iris
from sklearn import tree
iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)
from StringIO import StringIO
out = StringIO()
out = tree.export_graphviz(clf, out_file=out)
显然,graphiz文件已可以使用。

但是如何使用graphiz文件绘制树呢?(该示例未详细介绍如何绘制树)。

示例代码和提示非常受欢迎!

谢谢!

更新资料

我正在使用ubuntu 12.04,Python 2.7.3


阅读 218

收藏
2020-12-20

共1个答案

小编典典

您运行哪个操作系统?你已经graphviz安装好了吗?

在您的示例中,StringIO()对象保存graphviz数据,这是一种检查数据的方法:

...
>>> print out.getvalue()

digraph Tree {
0 [label="X[2] <= 2.4500\nerror = 0.666667\nsamples = 150\nvalue = [ 50.  50.  50.]", shape="box"] ;
1 [label="error = 0.0000\nsamples = 50\nvalue = [ 50.   0.   0.]", shape="box"] ;
0 -> 1 ;
2 [label="X[3] <= 1.7500\nerror = 0.5\nsamples = 100\nvalue = [  0.  50.  50.]", shape="box"] ;
0 -> 2 ;
3 [label="X[2] <= 4.9500\nerror = 0.168038\nsamples = 54\nvalue = [  0.  49.   5.]", shape="box"] ;
2 -> 3 ;
4 [label="X[3] <= 1.6500\nerror = 0.0407986\nsamples = 48\nvalue = [  0.  47.   1.]", shape="box"] ;
3 -> 4 ;
5 [label="error = 0.0000\nsamples = 47\nvalue = [  0.  47.   0.]", shape="box"] ;
4 -> 5 ;
6 [label="error = 0.0000\nsamples = 1\nvalue = [ 0.  0.  1.]", shape="box"] ;
4 -> 6 ;
7 [label="X[3] <= 1.5500\nerror = 0.444444\nsamples = 6\nvalue = [ 0.  2.  4.]", shape="box"] ;
3 -> 7 ;
8 [label="error = 0.0000\nsamples = 3\nvalue = [ 0.  0.  3.]", shape="box"] ;
7 -> 8 ;
9 [label="X[0] <= 6.9500\nerror = 0.444444\nsamples = 3\nvalue = [ 0.  2.  1.]", shape="box"] ;
7 -> 9 ;
10 [label="error = 0.0000\nsamples = 2\nvalue = [ 0.  2.  0.]", shape="box"] ;
9 -> 10 ;
11 [label="error = 0.0000\nsamples = 1\nvalue = [ 0.  0.  1.]", shape="box"] ;
9 -> 11 ;
12 [label="X[2] <= 4.8500\nerror = 0.0425331\nsamples = 46\nvalue = [  0.   1.  45.]", shape="box"] ;
2 -> 12 ;
13 [label="X[0] <= 5.9500\nerror = 0.444444\nsamples = 3\nvalue = [ 0.  1.  2.]", shape="box"] ;
12 -> 13 ;
14 [label="error = 0.0000\nsamples = 1\nvalue = [ 0.  1.  0.]", shape="box"] ;
13 -> 14 ;
15 [label="error = 0.0000\nsamples = 2\nvalue = [ 0.  0.  2.]", shape="box"] ;
13 -> 15 ;
16 [label="error = 0.0000\nsamples = 43\nvalue = [  0.   0.  43.]", shape="box"] ;
12 -> 16 ;
}

您可以将其编写为.dot文件并产生图像输出,如链接的源中所示:

$ dot -Tpng tree.dot -o tree.png (PNG格式输出)

2020-12-20