小编典典

如何在不使用numpy的情况下将2D列表展平为1D?

python

我有一个列表看起来像这样:

[[1,2,3],[1,2],[1,4,5,6,7]]

我想把它弄平 [1,2,3,1,2,1,4,5,6,7]

有没有使用numpy的轻量级功能来执行此操作?


阅读 217

收藏
2020-12-20

共1个答案

小编典典

如果没有numpy(ndarray.flatten),一种使用方式
chain.from_iterableitertools.chain

>>> list(chain.from_iterable([[1,2,3],[1,2],[1,4,5,6,7]]))
[1, 2, 3, 1, 2, 1, 4, 5, 6, 7]

或者作为另一种Python方式,您可以使用 列表理解

[j for sub in [[1,2,3],[1,2],[1,4,5,6,7]] for j in sub]

另一个非常适合短列表的功能方法也可以reduce在Python2和functools.reducePython3中使用(不要将其用于长列表):

In [4]: from functools import reduce # Python3

In [5]: reduce(lambda x,y :x+y ,[[1,2,3],[1,2],[1,4,5,6,7]])
Out[5]: [1, 2, 3, 1, 2, 1, 4, 5, 6, 7]

为了使其更快一点,您可以使用operator.add内置,而不是lambda

In [6]: from operator import add

In [7]: reduce(add ,[[1,2,3],[1,2],[1,4,5,6,7]])
Out[7]: [1, 2, 3, 1, 2, 1, 4, 5, 6, 7]

In [8]: %timeit reduce(lambda x,y :x+y ,[[1,2,3],[1,2],[1,4,5,6,7]])
789 ns ± 7.3 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [9]: %timeit reduce(add ,[[1,2,3],[1,2],[1,4,5,6,7]])
635 ns ± 4.38 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

基准:

:~$ python -m timeit "from itertools import chain;chain.from_iterable([[1,2,3],[1,2],[1,4,5,6,7]])"
1000000 loops, best of 3: 1.58 usec per loop
:~$ python -m timeit "reduce(lambda x,y :x+y ,[[1,2,3],[1,2],[1,4,5,6,7]])"
1000000 loops, best of 3: 0.791 usec per loop
:~$ python -m timeit "[j for i in [[1,2,3],[1,2],[1,4,5,6,7]] for j in i]"
1000000 loops, best of 3: 0.784 usec per loop

使用@Will答案的基准测试sum(对于短列表而言,它的速度很快,但对于长列表而言,它的速度很快):

:~$ python -m timeit "sum([[1,2,3],[4,5,6],[7,8,9]], [])"
1000000 loops, best of 3: 0.575 usec per loop
:~$ python -m timeit "sum([range(100),range(100)], [])"
100000 loops, best of 3: 2.27 usec per loop
:~$ python -m timeit "reduce(lambda x,y :x+y ,[range(100),range(100)])"
100000 loops, best of 3: 2.1 usec per loop
2020-12-20