使用给定的fp数种类,例如float16,直接构造具有完全错误结果的和。例如,使用python / numpy:
import numpy as np one = np.float16(1) ope = np.nextafter(one,one+one) np.array((ope,one,-one,-one)).cumsum() # array([1.001, 2. , 1. , 0. ], dtype=float16)
在这里,我们习惯于cumsum强制天真的求和。留给自己的设备numpy使用不同的求和顺序,会得到更好的答案:
cumsum
numpy
np.array((ope,one,-one,-one)).sum() # 0.000977
以上是基于取消。为了排除此类示例,让我们仅允许使用非否定术语。对于幼稚的求和,给出具有非常错误的求和的示例仍然很容易。以下求和10 ^ 4个相同的项,每个项等于10 ^ -4:
np.full(10**4,10**-4,np.float16).cumsum() # array([1.0e-04, 2.0e-04, 3.0e-04, ..., 2.5e-01, 2.5e-01, 2.5e-01], dtype=float16)
最后一项相差4倍。
同样,允许numpy使用成对求和会产生更好的结果:
np.full(10**4,10**-4,np.float16).sum() # 1.0
可以构造超过成对求和的和。选择分辨率低于1的eps时,我们可以使用1,eps,0,eps,3x0,eps,7x0,eps,15x0,eps,…,但这涉及到疯狂的术语数量。
我的问题:仅使用float16和非否定项,从成对求和中获得至少相差2倍的结果需要多少项。
奖励:同样的问题是“积极”而不是“非消极”。可能吗?
深度1432(因此2 ^ 1432项)足以使真实总和超出计算总和两倍。
我对如何确定所需的术语数量少于两个的想法有个想法。
我们使用动态编程来回答以下问题:给定深度d和目标浮点和s,具有成对和的2^d非负float16s的最大真和是s多少?
让那个数量成为T(d, s)。我们复发
T(0, s) = s, for all s. T(d, s) = max (T(d-1, a) + T(d-1, b)), for all d, s. a, b : float16(a + b) = s
重复执行的每个步骤都涉及遍历大约2^29组合(因为我们可以假设a ≤ b,并且负浮点数和特殊值超出了限制),并且所需的深度不会超过10^4Hans和您的答案。在我看来可行。
DP代码:
#include <algorithm> #include <cstdio> #include <vector> using Float16 = int; using Fixed = unsigned long long; static constexpr int kExponentBits = 5; static constexpr int kFractionBits = 10; static constexpr Float16 kInfinity = ((1 << kExponentBits) - 1) << kFractionBits; Fixed FixedFromFloat16(Float16 a) { int exponent = a >> kFractionBits; if (exponent == 0) { return a; } Float16 fraction = a - (exponent << kFractionBits); Float16 significand = (1 << kFractionBits) + fraction; return static_cast<Fixed>(significand) << (exponent - 1); } bool Plus(Float16 a, Float16 b, Float16* c) { Fixed exact_sum = FixedFromFloat16(a) + FixedFromFloat16(b); int exponent = 64 - kFractionBits - __builtin_clzll(exact_sum); if (exponent <= 0) { *c = static_cast<Float16>(exact_sum); return true; } Fixed ulp = Fixed{1} << (exponent - 1); Fixed remainder = exact_sum & (ulp - 1); Fixed rounded_sum = exact_sum - remainder; if (2 * remainder > ulp || (2 * remainder == ulp && (rounded_sum & ulp) != 0)) { rounded_sum += ulp; } exponent = 64 - kFractionBits - __builtin_clzll(rounded_sum); if (exponent >= (1 << kExponentBits) - 1) { return false; } Float16 significand = rounded_sum >> (exponent - 1); Float16 fraction = significand - (Float16{1} << kFractionBits); *c = (exponent << kFractionBits) + fraction; return true; } int main() { std::vector<Fixed> greatest0(kInfinity); for (Float16 a = 0; a < kInfinity; a++) { greatest0[a] = FixedFromFloat16(a); } for (int depth = 1; true; depth++) { auto greatest1 = greatest0; for (Float16 a = 1; a < kInfinity; a++) { Fixed greatest0_a = greatest0[a]; for (Float16 b = a; b < kInfinity; b++) { Float16 c; if (!Plus(a, b, &c)) { continue; } Fixed& value = greatest1[c]; value = std::max(value, greatest0_a + greatest0[b]); } } std::vector<double> ratios; ratios.reserve(kInfinity - 1); for (Float16 a = 1; a < kInfinity; a++) { ratios.push_back(greatest1[a] / static_cast<double>(FixedFromFloat16(a))); } std::printf("depth %d, ratio = %.17g\n", depth, *std::max_element(ratios.begin(), ratios.end())); greatest0.swap(greatest1); } }
我将运行它并在完成后发布更新。