小编典典

pandas:如何使用多索引进行数据透视?

python

我想对pandas进行一次透视DataFrame,索引是两列,而不是一列。例如,一个字段用于年份,一个字段用于月份,一个“ item”字段显示“
item 1”和“ item 2”,以及一个“ value”字段和数值。我希望索引为年+月。

我设法做到这一点的唯一方法是将两个字段合并为一个,然后再次将其分开。有没有更好的办法?

最少的代码复制到下面。非常感谢!

PS:是的,我知道关键字“ pivot”和“ multi-index”还有其他问题,但是我不知道他们是否/如何帮助我解决这个问题。

import pandas as pd
import numpy as np

df= pd.DataFrame()
month = np.arange(1, 13)
values1 = np.random.randint(0, 100, 12)
values2 = np.random.randint(200, 300, 12)


df['month'] = np.hstack((month, month))
df['year'] = 2004
df['value'] = np.hstack((values1, values2))
df['item'] = np.hstack((np.repeat('item 1', 12), np.repeat('item 2', 12)))

# This doesn't work: 
# ValueError: Wrong number of items passed 24, placement implies 2
# mypiv = df.pivot(['year', 'month'], 'item', 'value')

# This doesn't work, either:
# df.set_index(['year', 'month'], inplace=True)
# ValueError: cannot label index with a null key
# mypiv = df.pivot(columns='item', values='value')

# This below works but is not ideal: 
# I have to first concatenate then separate the fields I need
df['new field'] = df['year'] * 100 + df['month']

mypiv = df.pivot('new field', 'item', 'value').reset_index()
mypiv['year'] = mypiv['new field'].apply( lambda x: int(x) / 100)  
mypiv['month'] = mypiv['new field'] % 100

阅读 218

收藏
2020-12-20

共1个答案

小编典典

您可以分组然后再堆叠。

>>> df.groupby(['year', 'month', 'item'])['value'].sum().unstack('item')
item        item 1  item 2
year month                
2004 1          33     250
     2          44     224
     3          41     268
     4          29     232
     5          57     252
     6          61     255
     7          28     254
     8          15     229
     9          29     258
     10         49     207
     11         36     254
     12         23     209

或使用pivot_table

>>> df.pivot_table(
        values='value', 
        index=['year', 'month'], 
        columns='item', 
        aggfunc=np.sum)
item        item 1  item 2
year month                
2004 1          33     250
     2          44     224
     3          41     268
     4          29     232
     5          57     252
     6          61     255
     7          28     254
     8          15     229
     9          29     258
     10         49     207
     11         36     254
     12         23     209
2020-12-20