小编典典

Python(Pandas)在多索引数据框的每个lvl上添加小计

python

假设我有以下数据框:

a       b       c      Sce1     Sce2    Sce3    Sce4    Sce5    Sc6
Animal  Ground  Dog    0.0      0.9     0.5     0.0     0.3     0.4  
Animal  Ground  Cat    0.6      0.5     0.3     0.5     1.0     0.2 
Animal  Air     Eagle  1.0      0.1     0.1     0.6     0.9     0.1 
Animal  Air     Owl    0.3      0.1     0.5     0.3     0.5     0.9     
Object  Metal   Car    0.3      0.3     0.8     0.6     0.5     0.6 
Object  Metal   Bike   0.5      0.1     0.4     0.7     0.4     0.2 
Object  Wood    Chair  0.9      0.6     0.1     0.9     0.2     0.8 
Object  Wood    Table  0.9      0.6     0.6     0.1     0.9     0.7

我想创建一个MultiIndex,它将包含每个lvl的总和。输出将如下所示:

a      b      c     Sce1    Sce2    Sce3    Sce4    Sce5    Sce6
Animal              1.9     1.6     1.4     1.3     2.7     1.6 
       Ground       0.6     1.4     0.8     0.5     1.3     0.6 
              Dog   0.0     0.9     0.5     0.0     0.3     0.4 
              Cat   0.6     0.5     0.3     0.5     1.0     0.2 
       Air          1.3     0.2     0.7     0.8     1.4     1.0 
              Eagle 1.0     0.1     0.1     0.6     0.9     0.1 
              Owl   0.3     0.1     0.5     0.3     0.5     0.9 
Object              2.6     1.6     1.8     2.3     2.0     2.3 
       Metal        0.8     0.3     1.1     1.3     0.9     0.8 
              Car   0.3     0.3     0.8     0.6     0.5     0.6 
              Bike  0.5     0.1     0.4     0.7     0.4     0.2 
       Wood         1.8     1.3     0.6     1.0     1.1     1.5 
              Chair 0.9     0.6     0.1     0.9     0.2     0.8 
              Table 0.9     0.6     0.6     0.1     0.9     0.7

目前,我正在使用循环在每个级别上创建三个不同的数据框,然后在excel上对其进行操作,如下所示。因此,如果可能的话,我想在python中进行此计算。

for i in range range(0,3):
    df = df.groupby(list(df.columns)[0:lvl], as_index=False).sum()
    return df

提前谢谢了。


阅读 214

收藏
2020-12-20

共1个答案

小编典典

一些自由使用 MAGIC

pd.concat([
        df.assign(
            **{x: 'Total' for x in 'abc'[i:]}
        ).groupby(list('abc')).sum() for i in range(4)
    ]).sort_index()

                     Sce1  Sce2  Sce3  Sce4  Sce5  Sc6
a      b      c                                       
Animal Air    Eagle   1.0   0.1   0.1   0.6   0.9  0.1
              Owl     0.3   0.1   0.5   0.3   0.5  0.9
              Total   1.3   0.2   0.6   0.9   1.4  1.0
       Ground Cat     0.6   0.5   0.3   0.5   1.0  0.2
              Dog     0.0   0.9   0.5   0.0   0.3  0.4
              Total   0.6   1.4   0.8   0.5   1.3  0.6
       Total  Total   1.9   1.6   1.4   1.4   2.7  1.6
Object Metal  Bike    0.5   0.1   0.4   0.7   0.4  0.2
              Car     0.3   0.3   0.8   0.6   0.5  0.6
              Total   0.8   0.4   1.2   1.3   0.9  0.8
       Total  Total   2.6   1.6   1.9   2.3   2.0  2.3
       Wood   Chair   0.9   0.6   0.1   0.9   0.2  0.8
              Table   0.9   0.6   0.6   0.1   0.9  0.7
              Total   1.8   1.2   0.7   1.0   1.1  1.5
Total  Total  Total   4.5   3.2   3.3   3.7   4.7  3.9

我可以完全按照您的要求

pd.concat([
        df.assign(
            **{x: '' for x in 'abc'[i:]}
        ).groupby(list('abc')).sum() for i in range(1, 4)
    ]).sort_index()

                     Sce1  Sce2  Sce3  Sce4  Sce5  Sc6
a      b      c                                       
Animal                1.9   1.6   1.4   1.4   2.7  1.6
       Air            1.3   0.2   0.6   0.9   1.4  1.0
              Eagle   1.0   0.1   0.1   0.6   0.9  0.1
              Owl     0.3   0.1   0.5   0.3   0.5  0.9
       Ground         0.6   1.4   0.8   0.5   1.3  0.6
              Cat     0.6   0.5   0.3   0.5   1.0  0.2
              Dog     0.0   0.9   0.5   0.0   0.3  0.4
Object                2.6   1.6   1.9   2.3   2.0  2.3
       Metal          0.8   0.4   1.2   1.3   0.9  0.8
              Bike    0.5   0.1   0.4   0.7   0.4  0.2
              Car     0.3   0.3   0.8   0.6   0.5  0.6
       Wood           1.8   1.2   0.7   1.0   1.1  1.5
              Chair   0.9   0.6   0.1   0.9   0.2  0.8
              Table   0.9   0.6   0.6   0.1   0.9  0.7

至于如何!我将其留给读者练习。

2020-12-20