小编典典

向量化3D数组的NumPy协方差

python

我有一个形状的3D numpy数组(t, n1, n2)

x = np.random.rand(10, 2, 4)

我需要计算另一个3D数组y,其形状(t, n1, n1)如下:

y[0] = np.cov(x[0,:,:])

…等等,沿第一个轴的所有切片。

因此,一个循环实现将是:

y = np.zeros((10,2,2))
for i in np.arange(x.shape[0]):
    y[i] = np.cov(x[i, :, :])

有什么方法可以向量化它,以便我可以一次性计算所有协方差矩阵吗?我试着做:

x1 = x.swapaxes(1, 2)
y = np.dot(x, x1)

但这没有用。


阅读 126

收藏
2020-12-20

共1个答案

小编典典

入侵numpy.cov source code并尝试使用默认参数。事实证明,np.cov(x[i,:,:])将很简单:

N = x.shape[2]
m = x[i,:,:]
m -= np.sum(m, axis=1, keepdims=True) / N
cov = np.dot(m, m.T)  /(N - 1)

因此,任务是对这个循环进行矢量化处理,该循环将一次性遍历i并处理所有数据x。同样,我们可以broadcasting在第三步中使用。对于最后一步,我们将sum- reduction沿第一轴上的所有切片在此处执行。可以通过向量化方式有效地实现np.einsum。因此,最终的实现是这样的-

N = x.shape[2]
m1 = x - x.sum(2,keepdims=1)/N
y_out = np.einsum('ijk,ilk->ijl',m1,m1) /(N - 1)

运行时测试

In [155]: def original_app(x):
     ...:     n = x.shape[0]
     ...:     y = np.zeros((n,2,2))
     ...:     for i in np.arange(x.shape[0]):
     ...:         y[i]=np.cov(x[i,:,:])
     ...:     return y
     ...: 
     ...: def proposed_app(x):
     ...:     N = x.shape[2]
     ...:     m1 = x - x.sum(2,keepdims=1)/N
     ...:     out = np.einsum('ijk,ilk->ijl',m1,m1)  / (N - 1)
     ...:     return out
     ...:

In [156]: # Setup inputs
     ...: n = 10000
     ...: x = np.random.rand(n,2,4)
     ...:

In [157]: np.allclose(original_app(x),proposed_app(x))
Out[157]: True  # Results verified

In [158]: %timeit original_app(x)
1 loops, best of 3: 610 ms per loop

In [159]: %timeit proposed_app(x)
100 loops, best of 3: 6.32 ms per loop

巨大的加速!

2020-12-20