我正在使用一个由“101x101=10201”值组成的二维“numpy”数组。这样的 值为“float”类型,范围从“0.0”到“1.0”。数组具有 十、 从左上角开始的坐标系:因此, 位置(0,0)在左上角,而位置(101101)`在左上角 右下角。 这就是2D数组的样子(只是一个摘录):
十、 从左上角开始的坐标系:因此, 位置
在左上角,而位置
X,Y,Value 0,0,0.482 0,1,0.49 0,2,0.496 0,3,0.495 0,4,0.49 0,5,0.489 0,6,0.5 0,7,0.504 0,8,0.494 0,9,0.485
I would like to be able to:
1) Count the number of regions of cells (see image below) which value exceeds a given threshold, say 0.3;
0.3
2) Determine the distance between the visual centers of such regions and the top left corner, which has coordinates (0,0).
(0,0)
How could this be done in Python 2.7?
This is a visual representation of a 2D array with 2 regions highlighted ( the darker the color, the higher the value ):
你可以用一个简单的布尔值找出哪些像素满足你的截止值 条件,然后使用 scipy.ndimage.label and scipy.ndimage.center_of_mass to find the connected regions and compute their centers of mass:
scipy.ndimage.label
scipy.ndimage.center_of_mass
import numpy as np from scipy import ndimage from matplotlib import pyplot as plt # generate some lowpass-filtered noise as a test image gen = np.random.RandomState(0) img = gen.poisson(2, size=(512, 512)) img = ndimage.gaussian_filter(img.astype(np.double), (30, 30)) img -= img.min() img /= img.max() # use a boolean condition to find where pixel values are > 0.75 blobs = img > 0.75 # label connected regions that satisfy this condition labels, nlabels = ndimage.label(blobs) # find their centres of mass. in this case I'm weighting by the pixel values in # `img`, but you could also pass the boolean values in `blobs` to compute the # unweighted centroids. r, c = np.vstack(ndimage.center_of_mass(img, labels, np.arange(nlabels) + 1)).T # find their distances from the top-left corner d = np.sqrt(r*r + c*c) # plot fig, ax = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(10, 5)) ax[0].imshow(img) ax[1].hold(True) ax[1].imshow(np.ma.masked_array(labels, ~blobs), cmap=plt.cm.rainbow) for ri, ci, di in zip(r, c, d): ax[1].annotate('', xy=(0, 0), xytext=(ci, ri), arrowprops={'arrowstyle':'<-', 'shrinkA':0}) ax[1].annotate('d=%.1f' % di, xy=(ci, ri), xytext=(0, -5), textcoords='offset points', ha='center', va='top', fontsize='x-large') for aa in ax.flat: aa.set_axis_off() fig.tight_layout() plt.show()