小编典典

在Python中处理pandas DataFrames列分隔中的零

python

在Python中将熊猫DataFrame列彼此分开时,处理零分母的最佳方法是什么?例如:

df = pandas.DataFrame({"a": [1, 2, 0, 1, 5], "b": [0, 10, 20, 30, 50]})
df.a / df.b  # yields error

我希望分母为零的比率被注册为NA(numpy.nan)。在大熊猫中如何有效地做到这一点?

强制转换为float64在列级别上不起作用:

In [29]: df
Out[29]: 
   a   b
0  1   0
1  2  10
2  0  20
3  1  30
4  5  50

In [30]: df["a"].astype("float64") / df["b"].astype("float64")
...

FloatingPointError: divide by zero encountered in divide

如何仅针对特定列而不是整个df做到这一点?


阅读 220

收藏
2021-01-20

共1个答案

小编典典

您需要使用浮点数,否则您将获得整数除法,可能不是您想要的

In [12]: df = pandas.DataFrame({"a": [1, 2, 0, 1, 5], 
                                "b": [0, 10, 20, 30, 50]}).astype('float64')

In [13]: df
Out[13]: 
   a   b
0  1   0
1  2  10
2  0  20
3  1  30
4  5  50

In [14]: df.dtypes
Out[14]: 
a    float64
b    float64
dtype: object

这是一种方法

In [15]: x = df.a/df.b

In [16]: x
Out[16]: 
0         inf
1    0.200000
2    0.000000
3    0.033333
4    0.100000
dtype: float64

In [17]: x[np.isinf(x)] = np.nan

In [18]: x
Out[18]: 
0         NaN
1    0.200000
2    0.000000
3    0.033333
4    0.100000
dtype: float64

这是另一种方式

In [20]: df.a/df.b.replace({ 0 : np.nan })
Out[20]: 
0         NaN
1    0.200000
2    0.000000
3    0.033333
4    0.100000
dtype: float64
2021-01-20