以TFLite格式导出模型时,我一直在使用AutoML Vision Edge进行某些图像分类任务,并获得了不错的效果。但是,我只是尝试导出saved_model.pb文件并在Tensorflow 2.0中运行它,似乎遇到了一些问题。
程式码片段:
import numpy as np import tensorflow as tf import cv2 from tensorflow import keras my_model = tf.keras.models.load_model('saved_model') print(my_model) print(my_model.summary())
“ saved_model”是包含我下载的save_model.pb文件的目录。这是我所看到的:
2019-10-18 23:29:08.801647:I tensorflow / core / platform / cpu_feature_guard.cc:142]您的CPU支持该TensorFlow二进制文件未编译为使用的指令:AVX2 FMA 2019-10-18 23:29:08.829017 :我tensorflow / compiler / xla / service / service.cc:168] XLA服务0x7ffc2d717510在平台Host上执行计算。设备:2019-10-18 23:29:08.829038:I tensorflow / compiler / xla / service / service.cc:175] StreamExecutor设备(0):主机,默认版本回溯(最近一次调用为最新):文件“ classify_in_out_tf2。 py”,第81行,在print(my_model.summary())中AttributeError:“ AutoTrackable”对象没有属性“ summary”
我不确定这与我如何导出模型,代码与加载模型有关,或者这些模型与Tensorflow 2.0或某些组合不兼容是否存在问题。
任何帮助将不胜感激!
我已经saved_model.pb在docker容器之外进行了工作(用于对象检测,而不是分类-但它们应该是相似的,更改的输出以及输入tf 1.14),这是如何做的:
saved_model.pb
tf 1.14
import cv2 import tensorflow as tf cv2.imread(filepath) flag, bts = cv.imencode('.jpg', img) inp = [bts[:,0].tobytes()] with tf.Session(graph=tf.Graph()) as sess: tf.saved_model.loader.load(sess, ['serve'], 'directory_of_saved_model') graph = tf.get_default_graph() out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'), sess.graph.get_tensor_by_name('detection_scores:0'), sess.graph.get_tensor_by_name('detection_boxes:0'), sess.graph.get_tensor_by_name('detection_classes:0')], feed_dict={'encoded_image_string_tensor:0': inp})
import cv2 import tensorflow as tf import numpy as np with tf.Session(graph=tf.Graph()) as sess: tf.saved_model.loader.load(sess, ['serve'], 'directory_of_saved_model') graph = tf.get_default_graph() # Read and preprocess an image. img = cv2.imread(filepath) # Run the model out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'), sess.graph.get_tensor_by_name('detection_scores:0'), sess.graph.get_tensor_by_name('detection_boxes:0'), sess.graph.get_tensor_by_name('detection_classes:0')], feed_dict={'map/TensorArrayStack/TensorArrayGatherV3:0': img[np.newaxis, :, :, :]})
我使用netron查找我的输入。
import cv2 import tensorflow as tf img = cv2.imread('path_to_image_file') flag, bts = cv2.imencode('.jpg', img) inp = [bts[:,0].tobytes()] loaded = tf.saved_model.load(export_dir='directory_of_saved_model') infer = loaded.signatures["serving_default"] out = infer(key=tf.constant('something_unique'), image_bytes=tf.constant(inp))