小编典典

如何在keras中连接两层?

python

我有一个具有两层的神经网络的示例。第一层有两个参数,并有一个输出。第二个参数应接受一个参数作为第一层的结果,并附加一个参数。它看起来应该像这样:

x1  x2  x3
 \  /   /
  y1   /
   \  /
    y2

因此,我创建了一个具有两层的模型,并尝试将它们合并,但是它返回一个错误:The first layer in a Sequential model must get an "input_shape" or "batch_input_shape" argument.在line上result.add(merged)

模型:

first = Sequential()
first.add(Dense(1, input_shape=(2,), activation='sigmoid'))

second = Sequential()
second.add(Dense(1, input_shape=(1,), activation='sigmoid'))

result = Sequential()
merged = Concatenate([first, second])
ada_grad = Adagrad(lr=0.1, epsilon=1e-08, decay=0.0)
result.add(merged)
result.compile(optimizer=ada_grad, loss=_loss_tensor, metrics=['accuracy'])

阅读 153

收藏
2021-01-20

共1个答案

小编典典

之所以会出现错误resultSequential()是因为定义为只是模型的容器,而尚未定义输入。

给定您要构建的集合,result以接受第三个输入x3

first = Sequential()
first.add(Dense(1, input_shape=(2,), activation='sigmoid'))

second = Sequential()
second.add(Dense(1, input_shape=(1,), activation='sigmoid'))

third = Sequential()
# of course you must provide the input to result which will be your x3
third.add(Dense(1, input_shape=(1,), activation='sigmoid'))

# lets say you add a few more layers to first and second.
# concatenate them
merged = Concatenate([first, second])

# then concatenate the two outputs

result = Concatenate([merged,  third])

ada_grad = Adagrad(lr=0.1, epsilon=1e-08, decay=0.0)

result.compile(optimizer=ada_grad, loss='binary_crossentropy',
               metrics=['accuracy'])

但是,构建具有这种输入结构类型的模型的首选方法是使用功能性api

这是您的入门要求的实现:

from keras.models import Model
from keras.layers import Concatenate, Dense, LSTM, Input, concatenate
from keras.optimizers import Adagrad

first_input = Input(shape=(2, ))
first_dense = Dense(1, )(first_input)

second_input = Input(shape=(2, ))
second_dense = Dense(1, )(second_input)

merge_one = concatenate([first_dense, second_dense])

third_input = Input(shape=(1, ))
merge_two = concatenate([merge_one, third_input])

model = Model(inputs=[first_input, second_input, third_input], outputs=merge_two)
ada_grad = Adagrad(lr=0.1, epsilon=1e-08, decay=0.0)
model.compile(optimizer=ada_grad, loss='binary_crossentropy',
               metrics=['accuracy'])

要在评论中回答问题:

  1. 结果和合并如何连接?假设您的意思是它们如何连接。

串联的工作方式如下:

  a        b         c
a b c   g h i    a b c g h i
d e f   j k l    d e f j k l

即行只是连接在一起。

  1. 现在,x1输入到第一,x2输入到第二,x3输入第三。
2021-01-20