小编典典

Pyspark:将多个数组列拆分为行

python

我有一个具有一行和几列的数据框。一些列是单个值,另一些是列表。所有列表列的长度均相同。我想将每个列表列拆分为单独的行,同时将任何非列表列保持原样。

样本DF:

from pyspark import Row
from pyspark.sql import SQLContext
from pyspark.sql.functions import explode

sqlc = SQLContext(sc)

df = sqlc.createDataFrame([Row(a=1, b=[1,2,3],c=[7,8,9], d='foo')])
# +---+---------+---------+---+
# |  a|        b|        c|  d|
# +---+---------+---------+---+
# |  1|[1, 2, 3]|[7, 8, 9]|foo|
# +---+---------+---------+---+

我想要的是:

+---+---+----+------+
|  a|  b|  c |    d |
+---+---+----+------+
|  1|  1|  7 |  foo |
|  1|  2|  8 |  foo |
|  1|  3|  9 |  foo |
+---+---+----+------+

如果我只有一个列表列,只需执行以下操作即可轻松实现explode

df_exploded = df.withColumn('b', explode('b'))
# >>> df_exploded.show()
# +---+---+---------+---+
# |  a|  b|        c|  d|
# +---+---+---------+---+
# |  1|  1|[7, 8, 9]|foo|
# |  1|  2|[7, 8, 9]|foo|
# |  1|  3|[7, 8, 9]|foo|
# +---+---+---------+---+

但是,如果我也尝试使用explodec列,则会得到一个长度为我想要的平方的数据框:

df_exploded_again = df_exploded.withColumn('c', explode('c'))
# >>> df_exploded_again.show()
# +---+---+---+---+
# |  a|  b|  c|  d|
# +---+---+---+---+
# |  1|  1|  7|foo|
# |  1|  1|  8|foo|
# |  1|  1|  9|foo|
# |  1|  2|  7|foo|
# |  1|  2|  8|foo|
# |  1|  2|  9|foo|
# |  1|  3|  7|foo|
# |  1|  3|  8|foo|
# |  1|  3|  9|foo|
# +---+---+---+---+

我想要的是-对于每一列,采用该列中数组的第n个元素,并将其添加到新行中。我试过在数据框中的所有列上映射爆炸,但这似乎也不起作用:

df_split = df.rdd.map(lambda col: df.withColumn(col, explode(col))).toDF()

阅读 218

收藏
2021-01-20

共1个答案

小编典典

火花 > = 2.4

您可以替换zip_ udfarrays_zip功能

from pyspark.sql.functions import arrays_zip, col, explode

(df
    .withColumn("tmp", arrays_zip("b", "c"))
    .withColumn("tmp", explode("tmp"))
    .select("a", col("tmp.b"), col("tmp.c"), "d"))

火花 <2.4

DataFrames和UDF:

from pyspark.sql.types import ArrayType, StructType, StructField, IntegerType
from pyspark.sql.functions import col, udf, explode

zip_ = udf(
  lambda x, y: list(zip(x, y)),
  ArrayType(StructType([
      # Adjust types to reflect data types
      StructField("first", IntegerType()),
      StructField("second", IntegerType())
  ]))
)

(df
    .withColumn("tmp", zip_("b", "c"))
    # UDF output cannot be directly passed to explode
    .withColumn("tmp", explode("tmp"))
    .select("a", col("tmp.first").alias("b"), col("tmp.second").alias("c"), "d"))

RDDs

(df
    .rdd
    .flatMap(lambda row: [(row.a, b, c, row.d) for b, c in zip(row.b, row.c)])
    .toDF(["a", "b", "c", "d"]))

由于Python的通讯开销,这两种解决方案的效率都不高。如果数据大小固定,则可以执行以下操作:

from functools import reduce
from pyspark.sql import DataFrame

# Length of array
n = 3

# For legacy Python you'll need a separate function
# in place of method accessor 
reduce(
    DataFrame.unionAll, 
    (df.select("a", col("b").getItem(i), col("c").getItem(i), "d")
        for i in range(n))
).toDF("a", "b", "c", "d")

甚至:

from pyspark.sql.functions import array, struct

# SQL level zip of arrays of known size
# followed by explode
tmp = explode(array(*[
    struct(col("b").getItem(i).alias("b"), col("c").getItem(i).alias("c"))
    for i in range(n)
]))

(df
    .withColumn("tmp", tmp)
    .select("a", col("tmp").getItem("b"), col("tmp").getItem("c"), "d"))

与UDF或RDD相比,这应该明显更快。通用化以支持任意数量的列:

# This uses keyword only arguments
# If you use legacy Python you'll have to change signature
# Body of the function can stay the same
def zip_and_explode(*colnames, n):
    return explode(array(*[
        struct(*[col(c).getItem(i).alias(c) for c in colnames])
        for i in range(n)
    ]))

df.withColumn("tmp", zip_and_explode("b", "c", n=3))
2021-01-20