小编典典

如何使用MinMaxScaler sklearn归一化训练和测试数据

python

因此,我对此有疑问,一直在寻找答案。所以问题是我何时使用

from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()

df = pd.DataFrame({'A':[1,2,3,7,9,15,16,1,5,6,2,4,8,9],'B':[15,12,10,11,8,14,17,20,4,12,4,5,17,19],'C':['Y','Y','Y','Y','N','N','N','Y','N','Y','N','N','Y','Y']})

df[['A','B']] = min_max_scaler.fit_transform(df[['A','B']])
df['C'] = df['C'].apply(lambda x: 0 if x.strip()=='N' else 1)

这之后,我将训练和测试模型(AB作为特征,C如标签),并得到一些准确度得分。现在我的疑问是,当我必须预测新数据集的标签时会发生什么。说,

df = pd.DataFrame({'A':[25,67,24,76,23],'B':[2,54,22,75,19]})

因为当我规范化列时,A和的值B将根据新数据而不是将在其上训练模型的数据来更改。因此,现在将是下面的数据准备步骤之后的数据。

data[['A','B']] = min_max_scaler.fit_transform(data[['A','B']])

的价值AB将关于改变MaxMin价值df[['A','B']]。的数据准备df[['A','B']]是关于Min Maxdf[['A','B']]

有关不同数字的数据准备如何有效相关?我不明白这个预测在这里如何正确。


阅读 942

收藏
2021-01-20

共1个答案

小编典典

您应该拟合MinMaxScaler使用training数据,然后testing在进行预测之前将定标器应用于数据。


综上所述:

  • 步骤1:装scalerTRAINING data
  • 步骤2:使用scalertransform the TRAINING data
  • 第3步:使用transformed training datafit the predictive model
  • 步骤4:使用scalertransform the TEST data
  • 步骤5:predict使用trained model(步骤3)和transformed TEST data(步骤4)。

使用数据的示例:

from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
#training data
df = pd.DataFrame({'A':[1,2,3,7,9,15,16,1,5,6,2,4,8,9],'B':[15,12,10,11,8,14,17,20,4,12,4,5,17,19],'C':['Y','Y','Y','Y','N','N','N','Y','N','Y','N','N','Y','Y']})
#fit and transform the training data and use them for the model training
df[['A','B']] = min_max_scaler.fit_transform(df[['A','B']])
df['C'] = df['C'].apply(lambda x: 0 if x.strip()=='N' else 1)

#fit the model
model.fit(df['A','B'])

#after the model training on the transformed training data define the testing data df_test
df_test = pd.DataFrame({'A':[25,67,24,76,23],'B':[2,54,22,75,19]})

#before the prediction of the test data, ONLY APPLY the scaler on them
df_test[['A','B']] = min_max_scaler.transform(df_test[['A','B']])

#test the model
y_predicted_from_model = model.predict(df_test['A','B'])

使用虹膜数据的示例:

import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.svm import SVC

data = datasets.load_iris()
X = data.data
y = data.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

scaler = MinMaxScaler()
X_train_scaled = scaler.fit_transform(X_train)

model = SVC()
model.fit(X_train_scaled, y_train)

X_test_scaled = scaler.transform(X_test)
y_pred = model.predict(X_test_scaled)

希望这可以帮助。

2021-01-20