我想使用scikit-learn的GridSearchCV来确定随机森林模型的一些超级参数。我的数据是时间相关的,看起来像
import pandas as pd train = pd.DataFrame({'date': pd.DatetimeIndex(['2012-1-1', '2012-9-30', '2013-4-3', '2014-8-16', '2015-3-20', '2015-6-30']), 'feature1': [1.2, 3.3, 2.7, 4.0, 8.2, 6.5], 'feature2': [4, 4, 10, 3, 10, 9], 'target': [1,2,1,3,2,2]}) >>> train date feature1 feature2 target 0 2012-01-01 1.2 4 1 1 2012-09-30 3.3 4 2 2 2013-04-03 2.7 10 1 3 2014-08-16 4.0 3 3 4 2015-03-20 8.2 10 2 5 2015-06-30 6.5 9 2
如何实现以下交叉验证折叠技术?
train:(2012, 2013) - test:(2014) train:(2013, 2014) - test:(2015)
也就是说,我想使用2年的历史观测值来训练模型,然后在接下来的一年中测试其准确性。
您只需要将拆分的可迭代对象传递给GridSearchCV。此拆分应采用以下格式:
[ (split1_train_idxs, split1_test_idxs), (split2_train_idxs, split2_test_idxs), (split3_train_idxs, split3_test_idxs), ... ]
要获取idx,您可以执行以下操作:
groups = df.groupby(df.date.dt.year).groups # {2012: [0, 1], 2013: [2], 2014: [3], 2015: [4, 5]} sorted_groups = [value for (key, value) in sorted(groups.items())] # [[0, 1], [2], [3], [4, 5]] cv = [(sorted_groups[i] + sorted_groups[i+1], sorted_groups[i+2]) for i in range(len(sorted_groups)-2)]
看起来像这样:
[([0, 1, 2], [3]), # idxs of first split as (train, test) tuple ([2, 3], [4, 5])] # idxs of second split as (train, test) tuple
然后,您可以执行以下操作:
GridSearchCV(estimator, param_grid, cv=cv, ...)