如何在python中以numpy数组表示的图像数据实现双线性插值?
我发现有关此主题的许多问题和许多答案,尽管对于数据由网格上的样本(即矩形图像)组成并表示为numpy数组的常见情况而言,没有一个是有效的。此函数可以将列表作为x和y坐标,并且无需循环即可执行查找和求和。
def bilinear_interpolate(im, x, y): x = np.asarray(x) y = np.asarray(y) x0 = np.floor(x).astype(int) x1 = x0 + 1 y0 = np.floor(y).astype(int) y1 = y0 + 1 x0 = np.clip(x0, 0, im.shape[1]-1); x1 = np.clip(x1, 0, im.shape[1]-1); y0 = np.clip(y0, 0, im.shape[0]-1); y1 = np.clip(y1, 0, im.shape[0]-1); Ia = im[ y0, x0 ] Ib = im[ y1, x0 ] Ic = im[ y0, x1 ] Id = im[ y1, x1 ] wa = (x1-x) * (y1-y) wb = (x1-x) * (y-y0) wc = (x-x0) * (y1-y) wd = (x-x0) * (y-y0) return wa*Ia + wb*Ib + wc*Ic + wd*Id