我的数据如下所示:
print data
A B 2014-04-04 163.24 191.77 2014-06-11 165.43 182.25 2014-12-22 194.44 161.44 2014-03-25 163.25 195.04 2014-11-03 190.83 164.36 2014-06-16 165.85 182.35 2014-11-24 190.07 162.15 2014-05-21 159.35 186.39 2015-01-21 177.15 152.09 2014-08-28 177.65 192.00 2014-02-19 163.26 182.95 2014-05-12 159.55 192.57 2014-07-09 164.67 188.42 2015-02-26 192.20 160.87 2014-10-14 178.70 183.80 2014-07-16 170.47 192.36 2014-01-21 173.20 188.43 2014-06-03 161.80 184.37 2014-03-17 166.84 185.81 2014-08-11 172.46 187.47 2015-01-07 187.28 155.05 2014-05-29 160.74 183.76 2015-02-11 187.65 158.20 2014-02-27 165.38 185.27 2015-01-05 188.34 159.51 2014-07-01 166.81 186.35 2015-02-18 188.67 162.19 2014-04-03 166.09 192.69 2014-10-06 187.48 189.04 2014-12-29 196.19 160.51
当我尝试打电话时,data.corr()我会全部收回NaN。我在excel中进行了测试,确实可以计算出相关性。
data.corr()
NaN
知道为什么会这样吗?
我很乐意发布更多信息,但不确定会有所帮助。
print data.info() <class 'pandas.core.frame.DataFrame'> Index: 298 entries, 2014-04-04 to 2014-01-29 Data columns (total 2 columns): A 298 non-null float64 B 298 non-null float64 dtypes: float64(2)None print data.describe() A B count 298.000000 298.000000 mean 175.152886 178.596242 std 11.490668 13.709316 min 152.720000 151.410000 25% 165.502500 162.655000 50% 175.480000 184.330000 75% 185.085000 189.692500 max 196.890000 197.770000 print pd.version 0.14.1
杰森(Jason),使用示例数据对我来说很好用。
data.corr() A B A 1.000000 -0.779864 B -0.779864 1.000000
我在您的data.info()中注意到dtype上贴有’None’。当我加载样本数据时,我得到
data.info() <class 'pandas.core.frame.DataFrame'> Index: 30 entries, 2014-04-04 to 2014-12-29 Data columns (total 2 columns): A 30 non-null float64 B 30 non-null float64 dtypes: float64(2)
我想象是什么原因导致“无”导致您的问题。
希望这可以帮助[希望我可以留下评论,但还没有声誉!]