我想在numpy数组中设置特定值NaN(以将它们从按行均值计算中排除)。
NaN
我试过了
import numpy x = numpy.array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]]) cutoff = [5, 7] for i in range(len(x)): x[i][0:cutoff[i]:1] = numpy.nan
看着x,我只会看到-9223372036854775808我的期望NaN。
x
-9223372036854775808
我想到了一个替代方案:
for i in range(len(x)): for k in range(cutoff[i]): x[i][k] = numpy.nan
没发生什么事。我究竟做错了什么?
将适当元素设置为NaN的矢量化方法 [@unutbu的解决方案必须摆脱您得到的值错误。如果您希望vectorize获得性能,可以这样使用boolean indexing-
vectorize
boolean indexing
import numpy as np # Create mask of positions in x (with float datatype) where NaNs are to be put mask = np.asarray(cutoff)[:,None] > np.arange(x.shape[1]) # Put NaNs into masked region of x for the desired ouput x[mask] = np.nan
样品运行-
In [92]: x = np.random.randint(0,9,(4,7)).astype(float) In [93]: x Out[93]: array([[ 2., 1., 5., 2., 5., 2., 1.], [ 2., 5., 7., 1., 5., 4., 8.], [ 1., 1., 7., 4., 8., 3., 1.], [ 5., 8., 7., 5., 0., 2., 1.]]) In [94]: cutoff = [5,3,0,6] In [95]: x[np.asarray(cutoff)[:,None] > np.arange(x.shape[1])] = np.nan In [96]: x Out[96]: array([[ nan, nan, nan, nan, nan, 2., 1.], [ nan, nan, nan, 1., 5., 4., 8.], [ 1., 1., 7., 4., 8., 3., 1.], [ nan, nan, nan, nan, nan, nan, 1.]])
向量化方法可直接计算适当元素的按行平均值
如果要获取掩盖的平均值,则可以修改较早提出的矢量化方法,以避免NaNs完全处理,更重要的是保留x整数值。这是修改后的方法-
NaNs
# Get array version of cutoff cutoff_arr = np.asarray(cutoff) # Mask of positions in x which are to be considered for row-wise mean calculations mask1 = cutoff_arr[:,None] <= np.arange(x.shape[1]) # Mask x, calculate the corresponding sum and thus mean values for each row masked_mean_vals = (mask1*x).sum(1)/(x.shape[1] - cutoff_arr)
这是这种解决方案的示例运行-
In [61]: x = np.random.randint(0,9,(4,7)) In [62]: x Out[62]: array([[5, 0, 1, 2, 4, 2, 0], [3, 2, 0, 7, 5, 0, 2], [7, 2, 2, 3, 3, 2, 3], [4, 1, 2, 1, 4, 6, 8]]) In [63]: cutoff = [5,3,0,6] In [64]: cutoff_arr = np.asarray(cutoff) In [65]: mask1 = cutoff_arr[:,None] <= np.arange(x.shape[1]) In [66]: mask1 Out[66]: array([[False, False, False, False, False, True, True], [False, False, False, True, True, True, True], [ True, True, True, True, True, True, True], [False, False, False, False, False, False, True]], dtype=bool) In [67]: masked_mean_vals = (mask1*x).sum(1)/(x.shape[1] - cutoff_arr) In [68]: masked_mean_vals Out[68]: array([ 1. , 3.5 , 3.14285714, 8. ])