有没有更简洁,有效或简单的pythonic方法来执行以下操作?
def product(list): p = 1 for i in list: p *= i return p
编辑:
我实际上发现这比使用operator.mul快一点:
from operator import mul # from functools import reduce # python3 compatibility def with_lambda(list): reduce(lambda x, y: x * y, list) def without_lambda(list): reduce(mul, list) def forloop(list): r = 1 for x in list: r *= x return r import timeit a = range(50) b = range(1,50)#no zero t = timeit.Timer("with_lambda(a)", "from __main__ import with_lambda,a") print("with lambda:", t.timeit()) t = timeit.Timer("without_lambda(a)", "from __main__ import without_lambda,a") print("without lambda:", t.timeit()) t = timeit.Timer("forloop(a)", "from __main__ import forloop,a") print("for loop:", t.timeit()) t = timeit.Timer("with_lambda(b)", "from __main__ import with_lambda,b") print("with lambda (no 0):", t.timeit()) t = timeit.Timer("without_lambda(b)", "from __main__ import without_lambda,b") print("without lambda (no 0):", t.timeit()) t = timeit.Timer("forloop(b)", "from __main__ import forloop,b") print("for loop (no 0):", t.timeit())
给我
('with lambda:', 17.755449056625366) ('without lambda:', 8.2084708213806152) ('for loop:', 7.4836349487304688) ('with lambda (no 0):', 22.570688009262085) ('without lambda (no 0):', 12.472226858139038) ('for loop (no 0):', 11.04065990447998)
不使用lambda:
from operator import mul reduce(mul, list, 1)
更好,更快。使用python 2.7.5
from operator import mul import numpy as np import numexpr as ne # from functools import reduce # python3 compatibility a = range(1, 101) %timeit reduce(lambda x, y: x * y, a) # (1) %timeit reduce(mul, a) # (2) %timeit np.prod(a) # (3) %timeit ne.evaluate("prod(a)") # (4)
在以下配置中:
a = range(1, 101) # A a = np.array(a) # B a = np.arange(1, 1e4, dtype=int) #C a = np.arange(1, 1e5, dtype=float) #D
python 2.7.5的结果
| 1 | 2 | 3 | 4 | ------- + ----------- + ----------- + ----------- + ------ ----- + 20.8 µs 13.3 µs 22.6 µs 39.6 µs B 106 µs 95.3 µs 5.92 µs 26.1 µs C 4.34毫秒3.51毫秒16.7微秒38.9微秒 D 46.6毫秒38.5毫秒180 µs 216 µs
结果:np.prod如果np.array用作数据结构,则速度最快(小型阵列为18x,大型阵列为250x)
np.prod
np.array
使用python 3.3.2:
| 1 | 2 | 3 | 4 | ------- + ----------- + ----------- + ----------- + ------ ----- + 23.6 µs 12.3 µs 68.6 µs 84.9 µs B 133 µs 107 µs 7.42 µs 27.5 µs C 4.79毫秒3.74毫秒18.6微秒40.9微秒 D 48.4毫秒36.8毫秒187微秒214微秒
python 3更慢吗?