我最近对算法产生了兴趣,并开始通过编写一个简单的实现然后以各种方式对其进行优化来探索它们。
我已经熟悉用于分析运行时的标准 Python 模块(对于大多数事情,我发现 IPython 中的 timeit 魔术函数就足够了),但我也对内存使用感兴趣,因此我也可以探索这些权衡(例如,缓存先前计算值的表与根据需要重新计算它们的成本)。是否有一个模块可以为我分析给定函数的内存使用情况?
这个已经在这里回答了:Python memory profiler
基本上你会做这样的事情(引自Guppy-PE):
>>> from guppy import hpy; h=hpy() >>> h.heap() Partition of a set of 48477 objects. Total size = 3265516 bytes. Index Count % Size % Cumulative % Kind (class / dict of class) 0 25773 53 1612820 49 1612820 49 str 1 11699 24 483960 15 2096780 64 tuple 2 174 0 241584 7 2338364 72 dict of module 3 3478 7 222592 7 2560956 78 types.CodeType 4 3296 7 184576 6 2745532 84 function 5 401 1 175112 5 2920644 89 dict of class 6 108 0 81888 3 3002532 92 dict (no owner) 7 114 0 79632 2 3082164 94 dict of type 8 117 0 51336 2 3133500 96 type 9 667 1 24012 1 3157512 97 __builtin__.wrapper_descriptor <76 more rows. Type e.g. '_.more' to view.> >>> h.iso(1,[],{}) Partition of a set of 3 objects. Total size = 176 bytes. Index Count % Size % Cumulative % Kind (class / dict of class) 0 1 33 136 77 136 77 dict (no owner) 1 1 33 28 16 164 93 list 2 1 33 12 7 176 100 int >>> x=[] >>> h.iso(x).sp 0: h.Root.i0_modules['__main__'].__dict__['x'] >>>