小编典典

使用 Pandas 将列转换为行

all

因此,我的数据集按位置包含 n 个日期的一些信息。问题是每个日期实际上是不同的列标题。例如 CSV 看起来像

location    name    Jan-2010    Feb-2010    March-2010
A           "test"  12          20          30
B           "foo"   18          20          25

我想要的是它看起来像

location    name    Date        Value
A           "test"  Jan-2010    12       
A           "test"  Feb-2010    20
A           "test"  March-2010  30
B           "foo"   Jan-2010    18       
B           "foo"   Feb-2010    20
B           "foo"   March-2010  25

我的问题是我不知道列中有多少日期(尽管我知道它们总是在名称之后开始)


阅读 58

收藏
2022-06-22

共1个答案

小编典典

UPDATE
从 v0.20 开始,melt是一阶函数,您现在可以使用

df.melt(id_vars=["location", "name"], 
        var_name="Date", 
        value_name="Value")

  location    name        Date  Value
0        A  "test"    Jan-2010     12
1        B   "foo"    Jan-2010     18
2        A  "test"    Feb-2010     20
3        B   "foo"    Feb-2010     20
4        A  "test"  March-2010     30
5        B   "foo"  March-2010     25

旧(ER)版本: <0.20

您可以使用pd.melt获得大部分的方式,然后排序:

>>> df
  location  name  Jan-2010  Feb-2010  March-2010
0        A  test        12        20          30
1        B   foo        18        20          25
>>> df2 = pd.melt(df, id_vars=["location", "name"], 
                  var_name="Date", value_name="Value")
>>> df2
  location  name        Date  Value
0        A  test    Jan-2010     12
1        B   foo    Jan-2010     18
2        A  test    Feb-2010     20
3        B   foo    Feb-2010     20
4        A  test  March-2010     30
5        B   foo  March-2010     25
>>> df2 = df2.sort(["location", "name"])
>>> df2
  location  name        Date  Value
0        A  test    Jan-2010     12
2        A  test    Feb-2010     20
4        A  test  March-2010     30
1        B   foo    Jan-2010     18
3        B   foo    Feb-2010     20
5        B   foo  March-2010     25

(可能想扔一个.reset_index(drop=True),只是为了保持输出干净。)

注意pd.DataFrame.sort
已弃用,支持pd.DataFrame.sort_values.

2022-06-22