我有一个数组,正在寻找重复项。
duplicates = false; for(j = 0; j < zipcodeList.length; j++){ for(k = 0; k < zipcodeList.length; k++){ if (zipcodeList[k] == zipcodeList[j]){ duplicates = true; } } }
但是,当没有重复项时,此代码不起作用。为什么?
On the nose answer..
duplicates=false; for (j=0;j<zipcodeList.length;j++) for (k=j+1;k<zipcodeList.length;k++) if (k!=j && zipcodeList[k] == zipcodeList[j]) duplicates=true;
编辑后切换.equals()回原来的位置,==因为我在你正在使用的地方阅读int过,最初的问题尚不清楚。还要设置k=j+1,以将执行时间减半,但仍为O(n 2)。
.equals()
==
int
k=j+1
A faster (in the limit) way
这是一种基于哈希的方法。你需要为自动装箱付款,但是它是O(n)而不是O(n 2)。一个进取的人会去寻找一个基于int的原始哈希集(Apache或Google Collections有这样的东西,methinks。)
boolean duplicates(final int[] zipcodelist) { Set<Integer> lump = new HashSet<Integer>(); for (int i : zipcodelist) { if (lump.contains(i)) return true; lump.add(i); } return false; }
Bow to HuyLe
请参阅HuyLe的答案以了解或多或少的O(n)解决方案,我认为这需要几个附加步骤:
static boolean duplicates(final int[] zipcodelist) { final int MAXZIP = 99999; boolean[] bitmap = new boolean[MAXZIP+1]; java.util.Arrays.fill(bitmap, false); for (int item : zipcodeList) if (!bitmap[item]) bitmap[item] = true; else return true; } return false; }
Or Just to be Compact
static boolean duplicates(final int[] zipcodelist) { final int MAXZIP = 99999; boolean[] bitmap = new boolean[MAXZIP+1]; // Java guarantees init to false for (int item : zipcodeList) if (!(bitmap[item] ^= true)) return true; return false; }
Does it Matter?
好吧,所以我运行了一个基准测试,到处都比较麻烦,但这是代码:
import java.util.BitSet; class Yuk { static boolean duplicatesZero(final int[] zipcodelist) { boolean duplicates=false; for (int j=0;j<zipcodelist.length;j++) for (int k=j+1;k<zipcodelist.length;k++) if (k!=j && zipcodelist[k] == zipcodelist[j]) duplicates=true; return duplicates; } static boolean duplicatesOne(final int[] zipcodelist) { final int MAXZIP = 99999; boolean[] bitmap = new boolean[MAXZIP + 1]; java.util.Arrays.fill(bitmap, false); for (int item : zipcodelist) { if (!(bitmap[item] ^= true)) return true; } return false; } static boolean duplicatesTwo(final int[] zipcodelist) { final int MAXZIP = 99999; BitSet b = new BitSet(MAXZIP + 1); b.set(0, MAXZIP, false); for (int item : zipcodelist) { if (!b.get(item)) { b.set(item, true); } else return true; } return false; } enum ApproachT { NSQUARED, HASHSET, BITSET}; /** * @param args */ public static void main(String[] args) { ApproachT approach = ApproachT.BITSET; final int REPS = 100; final int MAXZIP = 99999; int[] sizes = new int[] { 10, 1000, 10000, 100000, 1000000 }; long[][] times = new long[sizes.length][REPS]; boolean tossme = false; for (int sizei = 0; sizei < sizes.length; sizei++) { System.err.println("Trial for zipcodelist size= "+sizes[sizei]); for (int rep = 0; rep < REPS; rep++) { int[] zipcodelist = new int[sizes[sizei]]; for (int i = 0; i < zipcodelist.length; i++) { zipcodelist[i] = (int) (Math.random() * (MAXZIP + 1)); } long begin = System.currentTimeMillis(); switch (approach) { case NSQUARED : tossme ^= (duplicatesZero(zipcodelist)); break; case HASHSET : tossme ^= (duplicatesOne(zipcodelist)); break; case BITSET : tossme ^= (duplicatesTwo(zipcodelist)); break; } long end = System.currentTimeMillis(); times[sizei][rep] = end - begin; } long avg = 0; for (int rep = 0; rep < REPS; rep++) { avg += times[sizei][rep]; } System.err.println("Size=" + sizes[sizei] + ", avg time = " + avg / (double)REPS + "ms"); } } }
With NSQUARED:
Trial for size= 10 Size=10, avg time = 0.0ms Trial for size= 1000 Size=1000, avg time = 0.0ms Trial for size= 10000 Size=10000, avg time = 100.0ms Trial for size= 100000 Size=100000, avg time = 9923.3ms
With HashSet
Trial for zipcodelist size= 10 Size=10, avg time = 0.16ms Trial for zipcodelist size= 1000 Size=1000, avg time = 0.15ms Trial for zipcodelist size= 10000 Size=10000, avg time = 0.0ms Trial for zipcodelist size= 100000 Size=100000, avg time = 0.16ms Trial for zipcodelist size= 1000000 Size=1000000, avg time = 0.0ms
With BitSet
Trial for zipcodelist size= 10 Size=10, avg time = 0.0ms Trial for zipcodelist size= 1000 Size=1000, avg time = 0.0ms Trial for zipcodelist size= 10000 Size=10000, avg time = 0.0ms Trial for zipcodelist size= 100000 Size=100000, avg time = 0.0ms Trial for zipcodelist size= 1000000 Size=1000000, avg time = 0.0ms
BITSET Wins!
但是只有一个头发.... 15ms的误差在内currentTimeMillis(),我的基准测试中有一些空白。请注意,对于任何超过100000的列表,你都可以简单地返回,true因为会有重复项。实际上,如果列表是随机的,则可以为更短的列表返回true WHP。道德是什么?在极限情况下,最有效的实现是:
return true;
而且你不会经常犯错。