小编典典

这是一个“足够好”的随机算法吗?如果它更快,为什么不使用它?

all

我创建了一个名为 的类QuickRandom,它的工作是快速生成随机数。这真的很简单:只需取旧值,乘以 a double,然后取小数部分。

这是我QuickRandom的全部课程:

public class QuickRandom {
    private double prevNum;
    private double magicNumber;

    public QuickRandom(double seed1, double seed2) {
        if (seed1 >= 1 || seed1 < 0) throw new IllegalArgumentException("Seed 1 must be >= 0 and < 1, not " + seed1);
        prevNum = seed1;
        if (seed2 <= 1 || seed2 > 10) throw new IllegalArgumentException("Seed 2 must be > 1 and <= 10, not " + seed2);
        magicNumber = seed2;
    }

    public QuickRandom() {
        this(Math.random(), Math.random() * 10);
    }

    public double random() {
        return prevNum = (prevNum*magicNumber)%1;
    }

}

这是我为测试它而编写的代码:

public static void main(String[] args) {
        QuickRandom qr = new QuickRandom();

        /*for (int i = 0; i < 20; i ++) {
            System.out.println(qr.random());
        }*/

        //Warm up
        for (int i = 0; i < 10000000; i ++) {
            Math.random();
            qr.random();
            System.nanoTime();
        }

        long oldTime;

        oldTime = System.nanoTime();
        for (int i = 0; i < 100000000; i ++) {
            Math.random();
        }
        System.out.println(System.nanoTime() - oldTime);

        oldTime = System.nanoTime();
        for (int i = 0; i < 100000000; i ++) {
            qr.random();
        }
        System.out.println(System.nanoTime() - oldTime);
}

这是一个非常简单的算法,只需将前一个双精度数乘以一个“幻数”双精度数。我很快就把它拼凑起来,所以我可能会做得更好,但奇怪的是,它似乎工作得很好。

这是方法中注释掉的行的示例输出main

0.612201846732229
0.5823974655091941
0.31062451498865684
0.8324473610354004
0.5907187526770246
0.38650264675748947
0.5243464344127049
0.7812828761272188
0.12417247811074805
0.1322738256858378
0.20614642573072284
0.8797579436677381
0.022122999476108518
0.2017298328387873
0.8394849894162446
0.6548917685640614
0.971667953190428
0.8602096647696964
0.8438709031160894
0.694884972852229

嗯。很随意。事实上,这适用于游戏中的随机数生成器。

以下是未注释部分的示例输出:

5456313909
1427223941

哇!它的执行速度比Math.random.

我记得在某个地方读到Math.randomSystem.nanoTime()很多疯狂的模数和除法的东西。这真的有必要吗?我的算法执行得更快,而且看起来很随机。

我有两个问题:

  • 我的算法是否“足够好”(例如,对于 真正 随机数不太重要的游戏)?
  • Math.random当看起来只是简单的乘法和去掉小数就足够了,为什么要做这么多呢?

阅读 471

收藏
2022-08-29

共1个答案

小编典典

您的QuickRandom实现并没有真正均匀分布。频率通常在较低值处较高,同时Math.random()具有更均匀的分布。这是一个SSCCE,它表明:

package com.stackoverflow.q14491966;

import java.util.Arrays;

public class Test {

    public static void main(String[] args) throws Exception {
        QuickRandom qr = new QuickRandom();
        int[] frequencies = new int[10];
        for (int i = 0; i < 100000; i++) {
            frequencies[(int) (qr.random() * 10)]++;
        }
        printDistribution("QR", frequencies);

        frequencies = new int[10];
        for (int i = 0; i < 100000; i++) {
            frequencies[(int) (Math.random() * 10)]++;
        }
        printDistribution("MR", frequencies);
    }

    public static void printDistribution(String name, int[] frequencies) {
        System.out.printf("%n%s distribution |8000     |9000     |10000    |11000    |12000%n", name);
        for (int i = 0; i < 10; i++) {
            char[] bar = "                                                  ".toCharArray(); // 50 chars.
            Arrays.fill(bar, 0, Math.max(0, Math.min(50, frequencies[i] / 100 - 80)), '#');
            System.out.printf("0.%dxxx: %6d  :%s%n", i, frequencies[i], new String(bar));
        }
    }

}

平均结果如下所示:

QR distribution |8000     |9000     |10000    |11000    |12000
0.0xxx:  11376  :#################################                 
0.1xxx:  11178  :###############################                   
0.2xxx:  11312  :#################################                 
0.3xxx:  10809  :############################                      
0.4xxx:  10242  :######################                            
0.5xxx:   8860  :########                                          
0.6xxx:   9004  :##########                                        
0.7xxx:   8987  :#########                                         
0.8xxx:   9075  :##########                                        
0.9xxx:   9157  :###########

MR distribution |8000     |9000     |10000    |11000    |12000
0.0xxx:  10097  :####################                              
0.1xxx:   9901  :###################                               
0.2xxx:  10018  :####################                              
0.3xxx:   9956  :###################                               
0.4xxx:   9974  :###################                               
0.5xxx:  10007  :####################                              
0.6xxx:  10136  :#####################                             
0.7xxx:   9937  :###################                               
0.8xxx:  10029  :####################                              
0.9xxx:   9945  :###################

如果你重复测试,你会看到 QR 分布变化很大,这取决于初始种子,而 MR
分布是稳定的。有时它会达到所需的均匀分布,但通常不会。这是一个更极端的例子,它甚至超出了图表的边界:

QR distribution |8000     |9000     |10000    |11000    |12000
0.0xxx:  41788  :##################################################
0.1xxx:  17495  :##################################################
0.2xxx:  10285  :######################                            
0.3xxx:   7273  :                                                  
0.4xxx:   5643  :                                                  
0.5xxx:   4608  :                                                  
0.6xxx:   3907  :                                                  
0.7xxx:   3350  :                                                  
0.8xxx:   2999  :                                                  
0.9xxx:   2652  :
2022-08-29