给定2个数组Array1 = {a,b,c...n}以及Array2 = {10,20,15....x}如何生成所有可能的组合作为字符串 a(i)b(j)c(k)n(p) 其中
Array1 = {a,b,c...n}
Array2 = {10,20,15....x}
1 <= i <= 10, 1 <= j <= 20 , 1 <= k <= 15, .... 1 <= p <= x
如:
a1 b1 c1 .... n1 a1 b1 c1..... n2 ...... ...... a10 b20 c15 nx (last combination)
因此,在所有的组合总数中=元素的乘积 array2 = (10 X 20 X 15 X ..X x)
array2 = (10 X 20 X 15 X ..X x)
类似于笛卡尔乘积,其中第二个数组定义第一个数组中每个元素的上限。
固定数字示例
Array x = [a,b,c] Array y = [3,2,4]
因此,我们将有3 * 2 * 4 = 24个组合。结果应为:
a1 b1 c1 a1 b1 c2 a1 b1 c3 a1 b1 c4 a1 b2 c1 a1 b2 c2 a1 b2 c3 a1 b2 c4 a2 b1 c1 a2 b1 c2 a2 b1 c3 a2 b1 c4 a2 b2 c1 a2 b2 c2 a2 b2 c3 a2 b2 c4 a3 b1 c1 a3 b1 c2 a3 b1 c3 a3 b1 c4 a3 b2 c1 a3 b2 c2 a3 b2 c3 a3 b2 c4 (last)
using System; using System.Text; public static string[] GenerateCombinations(string[] Array1, int[] Array2) { if(Array1 == null) throw new ArgumentNullException("Array1"); if(Array2 == null) throw new ArgumentNullException("Array2"); if(Array1.Length != Array2.Length) throw new ArgumentException("Must be the same size as Array1.", "Array2"); if(Array1.Length == 0) return new string[0]; int outputSize = 1; var current = new int[Array1.Length]; for(int i = 0; i < current.Length; ++i) { if(Array2[i] < 1) throw new ArgumentException("Contains invalid values.", "Array2"); if(Array1[i] == null) throw new ArgumentException("Contains null values.", "Array1"); outputSize *= Array2[i]; current[i] = 1; } var result = new string[outputSize]; for(int i = 0; i < outputSize; ++i) { var sb = new StringBuilder(); for(int j = 0; j < current.Length; ++j) { sb.Append(Array1[j]); sb.Append(current[j].ToString()); if(j != current.Length - 1) sb.Append(' '); } result[i] = sb.ToString(); int incrementIndex = current.Length - 1; while(incrementIndex >= 0 && current[incrementIndex] == Array2[incrementIndex]) { current[incrementIndex] = 1; --incrementIndex; } if(incrementIndex >= 0) ++current[incrementIndex]; } return result; }