我正在使用Java 8的流,无法理解我得到的性能结果。我有2个核心CPU(Intel i73520M),Windows 8 x64和64位Java 8 Update5。我正在对String的流/并行流进行简单映射,发现并行版本要慢一些。
Function<Stream<String>, Long> timeOperation = (Stream<String> stream) -> { long time1 = System.nanoTime(); final List<String> list = stream .map(String::toLowerCase) .collect(Collectors.toList()); long time2 = System.nanoTime(); return time2 - time1; }; Consumer<Stream<String>> printTime = stream -> System.out.println(timeOperation.apply(stream) / 1000000f); String[] array = new String[1000000]; Arrays.fill(array, "AbabagalamagA"); printTime.accept(Arrays.stream(array)); // prints around 600 printTime.accept(Arrays.stream(array).parallel()); // prints around 900
考虑到我有2个CPU内核,并行版本是否应该更快?有人可以提示我为什么并行版本比较慢吗?
确实有几个并行发生的问题。
首先是并行解决问题总是要比按顺序完成更多的实际工作。开销涉及将工作划分为多个线程,以及合并或合并结果。诸如将短字符串转换为小写字母之类的问题很小,以至于它们有被并行拆分开销淹没的危险。
第二个问题是,对Java程序进行基准测试非常微妙,并且很容易得出令人困惑的结果。两个常见问题是JIT编译和无效代码消除。简短的基准测试通常在JIT编译之前或期间完成,因此它们无法衡量峰值吞吐量,实际上,它们可能是在衡量JIT本身。当编译发生时是不确定的,因此它也可能导致结果变化很大。
对于小型综合基准,工作负载通常会计算被丢弃的结果。JIT编译器非常擅长检测到这一点,并消除了不会产生在任何地方使用的结果的代码。在这种情况下,可能不会发生这种情况,但是如果你修改其他综合工作负载,则肯定会发生。当然,如果JIT消除了基准测试工作量,它将使基准测试无用。
我强烈建议你使用完善的基准测试框架(例如JMH),而不是手动编写一个自己的框架。JMH具有帮助避免常见基准测试陷阱(包括这些陷阱)的设施,并且很容易设置和运行。这是你转换为使用JMH的基准:
package com.stackoverflow.questions; import java.util.Arrays; import java.util.List; import java.util.stream.Collectors; import java.util.concurrent.TimeUnit; import org.openjdk.jmh.annotations.*; public class SO23170832 { @State(Scope.Benchmark) public static class BenchmarkState { static String[] array; static { array = new String[1000000]; Arrays.fill(array, "AbabagalamagA"); } } @GenerateMicroBenchmark @OutputTimeUnit(TimeUnit.SECONDS) public List<String> sequential(BenchmarkState state) { return Arrays.stream(state.array) .map(x -> x.toLowerCase()) .collect(Collectors.toList()); } @GenerateMicroBenchmark @OutputTimeUnit(TimeUnit.SECONDS) public List<String> parallel(BenchmarkState state) { return Arrays.stream(state.array) .parallel() .map(x -> x.toLowerCase()) .collect(Collectors.toList()); } }
我使用命令运行此命令:
java -jar dist/microbenchmarks.jar ".*SO23170832.*" -wi 5 -i 5 -f 1
(这些选项指示五个热身迭代,五个基准迭代和一个分叉的JVM。)在运行期间,JMH发出许多详细消息,而我已经忽略了这些消息。总结结果如下。
Benchmark Mode Samples Mean Mean error Units c.s.q.SO23170832.parallel thrpt 5 4.600 5.995 ops/s c.s.q.SO23170832.sequential thrpt 5 1.500 1.727 ops/s
请注意,结果以每秒操作数为单位,因此看起来并行运行比顺序运行快约三倍。但是我的机器只有两个核心。嗯 每次运行的平均错误实际上大于平均运行时间!WAT?这里有些鱼腥味。
这给我们带来了第三个问题。仔细研究工作量,我们可以看到它为每个输入分配了一个新的String对象,并且还将结果收集到一个列表中,该列表涉及大量的重新分配和复制。我猜想这将导致大量垃圾回收。我们可以通过在启用了GC消息的情况下重新运行基准测试来看到这一点:
java -verbose:gc -jar dist/microbenchmarks.jar ".*SO23170832.*" -wi 5 -i 5 -f 1
结果如下:
[GC (Allocation Failure) 512K->432K(130560K), 0.0024130 secs] [GC (Allocation Failure) 944K->520K(131072K), 0.0015740 secs] [GC (Allocation Failure) 1544K->777K(131072K), 0.0032490 secs] [GC (Allocation Failure) 1801K->1027K(132096K), 0.0023940 secs] # Run progress: 0.00% complete, ETA 00:00:20 # VM invoker: /Users/src/jdk/jdk8-b132.jdk/Contents/Home/jre/bin/java # VM options: -verbose:gc # Fork: 1 of 1 [GC (Allocation Failure) 512K->424K(130560K), 0.0015460 secs] [GC (Allocation Failure) 933K->552K(131072K), 0.0014050 secs] [GC (Allocation Failure) 1576K->850K(131072K), 0.0023050 secs] [GC (Allocation Failure) 3075K->1561K(132096K), 0.0045140 secs] [GC (Allocation Failure) 1874K->1059K(132096K), 0.0062330 secs] # Warmup: 5 iterations, 1 s each # Measurement: 5 iterations, 1 s each # Threads: 1 thread, will synchronize iterations # Benchmark mode: Throughput, ops/time # Benchmark: com.stackoverflow.questions.SO23170832.parallel # Warmup Iteration 1: [GC (Allocation Failure) 7014K->5445K(132096K), 0.0184680 secs] [GC (Allocation Failure) 7493K->6346K(135168K), 0.0068380 secs] [GC (Allocation Failure) 10442K->8663K(135168K), 0.0155600 secs] [GC (Allocation Failure) 12759K->11051K(139776K), 0.0148190 secs] [GC (Allocation Failure) 18219K->15067K(140800K), 0.0241780 secs] [GC (Allocation Failure) 22167K->19214K(145920K), 0.0208510 secs] [GC (Allocation Failure) 29454K->25065K(147456K), 0.0333080 secs] [GC (Allocation Failure) 35305K->30729K(153600K), 0.0376610 secs] [GC (Allocation Failure) 46089K->39406K(154624K), 0.0406060 secs] [GC (Allocation Failure) 54766K->48299K(164352K), 0.0550140 secs] [GC (Allocation Failure) 71851K->62725K(165376K), 0.0612780 secs] [GC (Allocation Failure) 86277K->74864K(184320K), 0.0649210 secs] [GC (Allocation Failure) 111216K->94203K(185856K), 0.0875710 secs] [GC (Allocation Failure) 130555K->114932K(199680K), 0.1030540 secs] [GC (Allocation Failure) 162548K->141952K(203264K), 0.1315720 secs] [Full GC (Ergonomics) 141952K->59696K(159232K), 0.5150890 secs] [GC (Allocation Failure) 105613K->85547K(184832K), 0.0738530 secs] 1.183 ops/s
注意:以开头的线#是正常的JMH输出线。其余所有都是GC消息。这只是五个预热迭代中的第一个,它先于五个基准迭代。在其余的迭代中,GC消息以相同的方式继续。我认为可以肯定地说,测得的性能主要由GC开销决定,不应相信报告的结果。
目前尚不清楚该怎么办。这纯粹是综合性的工作量。显然,与分配和复制相比,完成实际工作只需要很少的CPU时间。很难说你真正想在这里衡量什么。一种方法是提出在某种意义上更“真实”的不同工作负载。另一种方法是更改堆和GC参数,以避免在基准测试运行期间出现GC。