我们在Spark上使用Redis来缓存键值对,这是代码:
import com.redis.RedisClient val r = new RedisClient("192.168.1.101", 6379) val perhit = perhitFile.map(x => { val arr = x.split(" ") val readId = arr(0).toInt val refId = arr(1).toInt val start = arr(2).toInt val end = arr(3).toInt val refStr = r.hmget("refStr", refId).get(refId).split(",")(1) val readStr = r.hmget("readStr", readId).get(readId) val realend = if(end > refStr.length - 1) refStr.length - 1 else end val refOneStr = refStr.substring(start, realend) (readStr, refOneStr, refId, start, realend, readId) })
但是编译器给了我这样的反馈:
Exception in thread "main" org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:166) at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:158) at org.apache.spark.SparkContext.clean(SparkContext.scala:1242) at org.apache.spark.rdd.RDD.map(RDD.scala:270) at com.ynu.App$.main(App.scala:511) at com.ynu.App.main(App.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:328) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) Caused by: java.io.NotSerializableException: com.redis.RedisClient at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1183) at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1547) at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1508) at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1431) at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1177) at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:347) at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:42) at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:73) at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:164) ... 12 more
有人可以告诉我如何序列化从Redis获得的数据。非常感谢。
在Spark中,RDDs(如此map处)上的函数被序列化并发送给执行程序进行处理。这意味着这些操作中包含的所有元素都应该可序列化。
RDD
map
Redis连接不可序列化,因为它打开了到目标DB的TCP连接,该TCP连接已绑定到创建它的机器。
解决方案是在本地执行上下文中的执行器上创建那些连接。做到这一点的方法很少。我想到的两个是:
rdd.mapPartitions
mapPartitions 仅需对程序结构进行少量更改即可轻松实现:
mapPartitions
val perhit = perhitFile.mapPartitions{partition => val r = new RedisClient("192.168.1.101", 6379) // create the connection in the context of the mapPartition operation val res = partition.map{ x => ... val refStr = r.hmget(...) // use r to process the local data } r.close // take care of resources res }
可以使用持有对连接的延迟引用的对象对单例连接管理器进行建模(注意:可变引用也将起作用)。
object RedisConnection extends Serializable { lazy val conn: RedisClient = new RedisClient("192.168.1.101", 6379) }
然后可以使用该对象实例化每个辅助JVM的1个连接,并用作Serializable操作闭包中的对象。
Serializable
val perhit = perhitFile.map{x => val param = f(x) val refStr = RedisConnection.conn.hmget(...) // use RedisConnection to get a connection to the local data } }
使用单例对象的优点是开销较小,因为连接仅由JVM创建一次(而不是每个RDD分区1个)
还有一些缺点:
(*)代码用于说明目的。未经编译或测试。