我想在python中创建一个redis缓存,作为任何自尊的科学家,我都做了一个基准测试性能。
有趣的是,redis的表现并不那么好。Python做一些不可思议的事情(存储文件),或者我的redis版本太慢了。
我不知道这是否是因为我的代码的结构方式或原因,但是我希望redis比它做得更好。
为了进行Redis缓存,我将二进制数据(在本例中为HTML页面)设置为从文件名派生的密钥,有效期为5分钟。
在所有情况下,文件处理都是通过f.read()完成的(这比f.readlines()快约3倍,我需要二进制blob)。
我在比较中是否缺少某些东西,还是Redis确实与磁盘不匹配?Python是否将文件缓存在某个位置,然后每次都重新访问它?为什么这比访问redis快得多?
我在64位Ubuntu系统上使用redis 2.8,python 2.7和redis-py。
我认为Python并没有做任何特别神奇的事情,因为我做了一个函数,将文件数据存储在python对象中并永久产生。
我对四个函数调用进行了分组:
读取文件X次
调用该函数以查看redis对象是否仍在内存中,加载它或缓存新文件(单个和多个redis实例)。
创建生成器的函数,该生成器从redis数据库(带有redis的单个和多个实例)产生结果。
最后,将文件存储在内存中并永久保存。
import redis import time def load_file(fp, fpKey, r, expiry): with open(fp, "rb") as f: data = f.read() p = r.pipeline() p.set(fpKey, data) p.expire(fpKey, expiry) p.execute() return data def cache_or_get_gen(fp, expiry=300, r=redis.Redis(db=5)): fpKey = "cached:"+fp while True: yield load_file(fp, fpKey, r, expiry) t = time.time() while time.time() - t - expiry < 0: yield r.get(fpKey) def cache_or_get(fp, expiry=300, r=redis.Redis(db=5)): fpKey = "cached:"+fp if r.exists(fpKey): return r.get(fpKey) else: with open(fp, "rb") as f: data = f.read() p = r.pipeline() p.set(fpKey, data) p.expire(fpKey, expiry) p.execute() return data def mem_cache(fp): with open(fp, "rb") as f: data = f.readlines() while True: yield data def stressTest(fp, trials = 10000): # Read the file x number of times a = time.time() for x in range(trials): with open(fp, "rb") as f: data = f.read() b = time.time() readAvg = trials/(b-a) # Generator version # Read the file, cache it, read it with a new instance each time a = time.time() gen = cache_or_get_gen(fp) for x in range(trials): data = next(gen) b = time.time() cachedAvgGen = trials/(b-a) # Read file, cache it, pass in redis instance each time a = time.time() r = redis.Redis(db=6) gen = cache_or_get_gen(fp, r=r) for x in range(trials): data = next(gen) b = time.time() inCachedAvgGen = trials/(b-a) # Non generator version # Read the file, cache it, read it with a new instance each time a = time.time() for x in range(trials): data = cache_or_get(fp) b = time.time() cachedAvg = trials/(b-a) # Read file, cache it, pass in redis instance each time a = time.time() r = redis.Redis(db=6) for x in range(trials): data = cache_or_get(fp, r=r) b = time.time() inCachedAvg = trials/(b-a) # Read file, cache it in python object a = time.time() for x in range(trials): data = mem_cache(fp) b = time.time() memCachedAvg = trials/(b-a) print "\n%s file reads: %.2f reads/second\n" %(trials, readAvg) print "Yielding from generators for data:" print "multi redis instance: %.2f reads/second (%.2f percent)" %(cachedAvgGen, (100*(cachedAvgGen-readAvg)/(readAvg))) print "single redis instance: %.2f reads/second (%.2f percent)" %(inCachedAvgGen, (100*(inCachedAvgGen-readAvg)/(readAvg))) print "Function calls to get data:" print "multi redis instance: %.2f reads/second (%.2f percent)" %(cachedAvg, (100*(cachedAvg-readAvg)/(readAvg))) print "single redis instance: %.2f reads/second (%.2f percent)" %(inCachedAvg, (100*(inCachedAvg-readAvg)/(readAvg))) print "python cached object: %.2f reads/second (%.2f percent)" %(memCachedAvg, (100*(memCachedAvg-readAvg)/(readAvg))) if __name__ == "__main__": fileToRead = "templates/index.html" stressTest(fileToRead)
现在的结果是:
10000 file reads: 30971.94 reads/second Yielding from generators for data: multi redis instance: 8489.28 reads/second (-72.59 percent) single redis instance: 8801.73 reads/second (-71.58 percent) Function calls to get data: multi redis instance: 5396.81 reads/second (-82.58 percent) single redis instance: 5419.19 reads/second (-82.50 percent) python cached object: 1522765.03 reads/second (4816.60 percent)
结果很有趣,因为a)生成器比每次调用函数都快,b)redis比从磁盘上读取慢,并且c)从python对象上读取快得离谱。
为什么从磁盘读取要比从Redis读取内存文件快得多?
编辑:一些更多的信息和测试。
我将功能替换为
data = r.get(fpKey) if data: return r.get(fpKey)
结果与
if r.exists(fpKey): data = r.get(fpKey) Function calls to get data using r.exists as test multi redis instance: 5320.51 reads/second (-82.34 percent) single redis instance: 5308.33 reads/second (-82.38 percent) python cached object: 1494123.68 reads/second (5348.17 percent) Function calls to get data using if data as test multi redis instance: 8540.91 reads/second (-71.25 percent) single redis instance: 7888.24 reads/second (-73.45 percent) python cached object: 1520226.17 reads/second (5132.01 percent)
实际上,在每个函数调用上创建一个新的redis实例实际上不会对读取速度产生明显影响,因为测试之间的差异性大于增益。
Sripathi Krishnan建议实现随机文件读取。从这些结果可以看出,缓存真正开始发挥作用。
Total number of files: 700 10000 file reads: 274.28 reads/second Yielding from generators for data: multi redis instance: 15393.30 reads/second (5512.32 percent) single redis instance: 13228.62 reads/second (4723.09 percent) Function calls to get data: multi redis instance: 11213.54 reads/second (3988.40 percent) single redis instance: 14420.15 reads/second (5157.52 percent) python cached object: 607649.98 reads/second (221446.26 percent)
文件读取中存在巨大的可变性,因此百分比差异并不是加速的良好指标。
Total number of files: 700 40000 file reads: 1168.23 reads/second Yielding from generators for data: multi redis instance: 14900.80 reads/second (1175.50 percent) single redis instance: 14318.28 reads/second (1125.64 percent) Function calls to get data: multi redis instance: 13563.36 reads/second (1061.02 percent) single redis instance: 13486.05 reads/second (1054.40 percent) python cached object: 587785.35 reads/second (50214.25 percent)
我使用random.choice(fileList)在每次通过函数时随机选择一个新文件。
完整的要旨在这里,如果有人想尝试一下-https: //gist.github.com/3885957
编辑编辑:没有意识到我正在为生成器调用一个文件(尽管函数调用和生成器的性能非常相似)。这也是来自生成器的不同文件的结果。
Total number of files: 700 10000 file reads: 284.48 reads/second Yielding from generators for data: single redis instance: 11627.56 reads/second (3987.36 percent) Function calls to get data: single redis instance: 14615.83 reads/second (5037.81 percent) python cached object: 580285.56 reads/second (203884.21 percent)
这是苹果与桔子的比较。参见http://redis.io/topics/benchmarks
Redis是高效的 远程 数据存储。每次在Redis上执行命令时,都会向Redis服务器发送一条消息,如果客户端是同步的,它将阻止等待答复。因此,除了命令本身的成本之外,您还需要支付网络往返费用或IPC费用。
在现代硬件上,与其他操作相比,网络往返或IPC的费用高得惊人。这是由于以下几个原因:
现在,让我们回顾一下结果。
比较使用生成器的实现和使用函数调用的实现,它们不会生成相同数量的Redis往返。使用生成器,您只需:
while time.time() - t - expiry < 0: yield r.get(fpKey)
因此,每次迭代1次往返。使用此功能,您可以:
if r.exists(fpKey): return r.get(fpKey)
因此,每次迭代2次往返。难怪发电机会更快。
当然,您应该重用相同的Redis连接以获得最佳性能。运行系统地连接/断开连接的基准毫无意义。
最后,关于Redis调用和文件读取之间的性能差异,您只需将本地调用与远程调用进行比较。文件读取由OS文件系统缓存,因此它们是内核和Python之间的快速内存传输操作。此处不涉及磁盘I / O。使用Redis,您必须支付往返的费用,因此速度要慢得多。