我正在尝试让Apple的示例核心ML模型在2017年WWDC上演示以正常运行。我正在使用GoogLeNet尝试对图像进行分类(请参阅Apple机器学习页面)。该模型将CVPixelBuffer作为输入。我有一个用于本演示的名为imageSample.jpg的图像。我的代码如下:
var sample = UIImage(named: "imageSample")?.cgImage let bufferThree = getCVPixelBuffer(sample!) let model = GoogLeNetPlaces() guard let output = try? model.prediction(input: GoogLeNetPlacesInput.init(sceneImage: bufferThree!)) else { fatalError("Unexpected runtime error.") } print(output.sceneLabel)
我总是在输出而不是图像分类中遇到意外的运行时错误。我的转换图像的代码如下:
func getCVPixelBuffer(_ image: CGImage) -> CVPixelBuffer? { let imageWidth = Int(image.width) let imageHeight = Int(image.height) let attributes : [NSObject:AnyObject] = [ kCVPixelBufferCGImageCompatibilityKey : true as AnyObject, kCVPixelBufferCGBitmapContextCompatibilityKey : true as AnyObject ] var pxbuffer: CVPixelBuffer? = nil CVPixelBufferCreate(kCFAllocatorDefault, imageWidth, imageHeight, kCVPixelFormatType_32ARGB, attributes as CFDictionary?, &pxbuffer) if let _pxbuffer = pxbuffer { let flags = CVPixelBufferLockFlags(rawValue: 0) CVPixelBufferLockBaseAddress(_pxbuffer, flags) let pxdata = CVPixelBufferGetBaseAddress(_pxbuffer) let rgbColorSpace = CGColorSpaceCreateDeviceRGB(); let context = CGContext(data: pxdata, width: imageWidth, height: imageHeight, bitsPerComponent: 8, bytesPerRow: CVPixelBufferGetBytesPerRow(_pxbuffer), space: rgbColorSpace, bitmapInfo: CGImageAlphaInfo.premultipliedFirst.rawValue) if let _context = context { _context.draw(image, in: CGRect.init(x: 0, y: 0, width: imageWidth, height: imageHeight)) } else { CVPixelBufferUnlockBaseAddress(_pxbuffer, flags); return nil } CVPixelBufferUnlockBaseAddress(_pxbuffer, flags); return _pxbuffer; } return nil }
我从以前的帖子中获得了此代码。我知道该代码可能不正确,但是我自己也不知道如何执行此操作。我相信这是包含错误的部分。该模型要求以下类型的输入:Image<RGB,224,224>
Image<RGB,224,224>
您无需费心处理图像就可以将Core ML模型与图像一起使用- 新的Vision框架可以为您做到这一点。
import Vision import CoreML let model = try VNCoreMLModel(for: MyCoreMLGeneratedModelClass().model) let request = VNCoreMLRequest(model: model, completionHandler: myResultsMethod) let handler = VNImageRequestHandler(url: myImageURL) handler.perform([request]) func myResultsMethod(request: VNRequest, error: Error?) { guard let results = request.results as? [VNClassificationObservation] else { fatalError("huh") } for classification in results { print(classification.identifier, // the scene label classification.confidence) } }
关于Vision的WWDC17会议应该有更多信息- 今天下午。