我正在尝试使用具有不连续x轴的pyplot创建一个图。通常的绘制方法是轴将具有以下内容:
(值)---- // ----(后值)
// //表示您正在跳过(值)和(后值)之间的所有内容。
我还没有找到任何这样的例子,所以我想知道是否有可能。我知道您可以在不连续的情况下加入数据,例如财务数据,但我想使轴上的跳跃更明确。目前,我只是在使用子图,但我真的很希望最终所有内容都在同一张图上。
这只是此示例的简单修改,具有不连续的x轴而不是y轴。(这就是为什么我要将此帖子设为CW)
基本上,你只需要执行以下操作:
import matplotlib.pylab as plt import numpy as np # If you're not familiar with np.r_, don't worry too much about this. It's just # a series with points from 0 to 1 spaced at 0.1, and 9 to 10 with the same spacing. x = np.r_[0:1:0.1, 9:10:0.1] y = np.sin(x) fig,(ax,ax2) = plt.subplots(1, 2, sharey=True) # plot the same data on both axes ax.plot(x, y, 'bo') ax2.plot(x, y, 'bo') # zoom-in / limit the view to different portions of the data ax.set_xlim(0,1) # most of the data ax2.set_xlim(9,10) # outliers only # hide the spines between ax and ax2 ax.spines['right'].set_visible(False) ax2.spines['left'].set_visible(False) ax.yaxis.tick_left() ax.tick_params(labeltop='off') # don't put tick labels at the top ax2.yaxis.tick_right() # Make the spacing between the two axes a bit smaller plt.subplots_adjust(wspace=0.15) plt.show()
要添加折断的轴线//效果,我们可以这样做(同样,从Paul Ivanov的示例进行了修改):
import matplotlib.pylab as plt import numpy as np # If you're not familiar with np.r_, don't worry too much about this. It's just # a series with points from 0 to 1 spaced at 0.1, and 9 to 10 with the same spacing. x = np.r_[0:1:0.1, 9:10:0.1] y = np.sin(x) fig,(ax,ax2) = plt.subplots(1, 2, sharey=True) # plot the same data on both axes ax.plot(x, y, 'bo') ax2.plot(x, y, 'bo') # zoom-in / limit the view to different portions of the data ax.set_xlim(0,1) # most of the data ax2.set_xlim(9,10) # outliers only # hide the spines between ax and ax2 ax.spines['right'].set_visible(False) ax2.spines['left'].set_visible(False) ax.yaxis.tick_left() ax.tick_params(labeltop='off') # don't put tick labels at the top ax2.yaxis.tick_right() # Make the spacing between the two axes a bit smaller plt.subplots_adjust(wspace=0.15) # This looks pretty good, and was fairly painless, but you can get that # cut-out diagonal lines look with just a bit more work. The important # thing to know here is that in axes coordinates, which are always # between 0-1, spine endpoints are at these locations (0,0), (0,1), # (1,0), and (1,1). Thus, we just need to put the diagonals in the # appropriate corners of each of our axes, and so long as we use the # right transform and disable clipping. d = .015 # how big to make the diagonal lines in axes coordinates # arguments to pass plot, just so we don't keep repeating them kwargs = dict(transform=ax.transAxes, color='k', clip_on=False) ax.plot((1-d,1+d),(-d,+d), **kwargs) # top-left diagonal ax.plot((1-d,1+d),(1-d,1+d), **kwargs) # bottom-left diagonal kwargs.update(transform=ax2.transAxes) # switch to the bottom axes ax2.plot((-d,d),(-d,+d), **kwargs) # top-right diagonal ax2.plot((-d,d),(1-d,1+d), **kwargs) # bottom-right diagonal # What's cool about this is that now if we vary the distance between # ax and ax2 via f.subplots_adjust(hspace=...) or plt.subplot_tool(), # the diagonal lines will move accordingly, and stay right at the tips # of the spines they are 'breaking' plt.show()