我有一个带有数值的数据框列:
df['percentage'].head() 46.5 44.2 100.0 42.12
我想查看该列作为箱数:
bins = [0, 1, 5, 10, 25, 50, 100]
我如何将结果作为垃圾箱value counts?
[0, 1] bin amount [1, 5] etc [5, 10] etc ......
你可以使用pandas.cut:
pandas.cut
bins = [0, 1, 5, 10, 25, 50, 100] df['binned'] = pd.cut(df['percentage'], bins) print (df) percentage binned 0 46.50 (25, 50] 1 44.20 (25, 50] 2 100.00 (50, 100] 3 42.12 (25, 50] bins = [0, 1, 5, 10, 25, 50, 100] labels = [1,2,3,4,5,6] df['binned'] = pd.cut(df['percentage'], bins=bins, labels=labels) print (df) percentage binned 0 46.50 5 1 44.20 5 2 100.00 6 3 42.12 5
或numpy.searchsorted:
bins = [0, 1, 5, 10, 25, 50, 100] df['binned'] = np.searchsorted(bins, df['percentage'].values) print (df) percentage binned 0 46.50 5 1 44.20 5 2 100.00 6 3 42.12 5
…然后value_countsor groupby和合计size:
s = pd.cut(df['percentage'], bins=bins).value_counts() print (s) (25, 50] 3 (50, 100] 1 (10, 25] 0 (5, 10] 0 (1, 5] 0 (0, 1] 0 Name: percentage, dtype: int64
s = df.groupby(pd.cut(df['percentage'], bins=bins)).size() print (s) percentage (0, 1] 0 (1, 5] 0 (5, 10] 0 (10, 25] 0 (25, 50] 3 (50, 100] 1 dtype: int64
默认cut返回categorical。
categorical
Series像这样的方法Series.value_counts()将使用所有类别,即使数据中不存在某些类别,也可以使用categorical操作。
Series
Series.value_counts()将