flatten_json
Repo使用:flatten](https://github.com/amirziai/flatten)
pip install flatten-json
def flatten_json(nested_json: dict, exclude: list=[''], sep: str='_') -> dict: """ Flatten a list of nested dicts. """ out = dict() def flatten(x: (list, dict, str), name: str='', exclude=exclude): if type(x) is dict: for a in x: if a not in exclude: flatten(x[a], f'{name}{a}{sep}') elif type(x) is list: i = 0 for a in x: flatten(a, f'{name}{i}{sep}') i += 1 else: out[name[:-1]] = x flatten(nested_json) return out
dicts
data
flatten
unflatten
JSON
dict
{}
flatten_json(data)
[{}, {}, {}]
[flatten_json(x) for x in data]
{1: {}, 2: {}, 3: {}}
[flatten_json(data[key]) for key in data.keys()]
{'key': [{}, {}, {}]}
[flatten_json(x) for x in data['key']]
pandas.DataFrame
pandas
import pandas as pd
{ "id": 1, "class": "c1", "owner": "myself", "metadata": { "m1": { "value": "m1_1", "timestamp": "d1" }, "m2": { "value": "m1_2", "timestamp": "d2" }, "m3": { "value": "m1_3", "timestamp": "d3" }, "m4": { "value": "m1_4", "timestamp": "d4" } }, "a1": { "a11": [ ] }, "m1": {}, "comm1": "COMM1", "comm2": "COMM21529089656387", "share": "xxx", "share1": "yyy", "hub1": "h1", "hub2": "h2", "context": [ ] }
df = pd.DataFrame([flatten_json(data)]) id class owner metadata_m1_value metadata_m1_timestamp metadata_m2_value metadata_m2_timestamp metadata_m3_value metadata_m3_timestamp metadata_m4_value metadata_m4_timestamp comm1 comm2 share share1 hub1 hub2 1 c1 myself m1_1 d1 m1_2 d2 m1_3 d3 m1_4 d4 COMM1 COMM21529089656387 xxx yyy h1 h2
[{ 'accuracy': 17, 'activity': [{ 'activity': [{ 'confidence': 100, 'type': 'STILL' } ], 'timestampMs': '1542652' } ], 'altitude': -10, 'latitudeE7': 3777321, 'longitudeE7': -122423125, 'timestampMs': '1542654', 'verticalAccuracy': 2 }, { 'accuracy': 17, 'activity': [{ 'activity': [{ 'confidence': 100, 'type': 'STILL' } ], 'timestampMs': '1542652' } ], 'altitude': -10, 'latitudeE7': 3777321, 'longitudeE7': -122423125, 'timestampMs': '1542654', 'verticalAccuracy': 2 }, { 'accuracy': 17, 'activity': [{ 'activity': [{ 'confidence': 100, 'type': 'STILL' } ], 'timestampMs': '1542652' } ], 'altitude': -10, 'latitudeE7': 3777321, 'longitudeE7': -122423125, 'timestampMs': '1542654', 'verticalAccuracy': 2 } ]
df = pd.DataFrame([flatten_json(x) for x in data]) accuracy activity_0_activity_0_confidence activity_0_activity_0_type activity_0_timestampMs altitude latitudeE7 longitudeE7 timestampMs verticalAccuracy 17 100 STILL 1542652 -10 3777321 -122423125 1542654 2 17 100 STILL 1542652 -10 3777321 -122423125 1542654 2 17 100 STILL 1542652 -10 3777321 -122423125 1542654 2
{ "1": { "VENUE": "JOEBURG", "COUNTRY": "HAE", "ITW": "XAD", "RACES": { "1": { "NO": 1, "TIME": "12:35" }, "2": { "NO": 2, "TIME": "13:10" }, "3": { "NO": 3, "TIME": "13:40" }, "4": { "NO": 4, "TIME": "14:10" }, "5": { "NO": 5, "TIME": "14:55" }, "6": { "NO": 6, "TIME": "15:30" }, "7": { "NO": 7, "TIME": "16:05" }, "8": { "NO": 8, "TIME": "16:40" } } }, "2": { "VENUE": "FOOBURG", "COUNTRY": "ABA", "ITW": "XAD", "RACES": { "1": { "NO": 1, "TIME": "12:35" }, "2": { "NO": 2, "TIME": "13:10" }, "3": { "NO": 3, "TIME": "13:40" }, "4": { "NO": 4, "TIME": "14:10" }, "5": { "NO": 5, "TIME": "14:55" }, "6": { "NO": 6, "TIME": "15:30" }, "7": { "NO": 7, "TIME": "16:05" }, "8": { "NO": 8, "TIME": "16:40" } } } }
df = pd.DataFrame([flatten_json(data[key]) for key in data.keys()]) VENUE COUNTRY ITW RACES_1_NO RACES_1_TIME RACES_2_NO RACES_2_TIME RACES_3_NO RACES_3_TIME RACES_4_NO RACES_4_TIME RACES_5_NO RACES_5_TIME RACES_6_NO RACES_6_TIME RACES_7_NO RACES_7_TIME RACES_8_NO RACES_8_TIME JOEBURG HAE XAD 1 12:35 2 13:10 3 13:40 4 14:10 5 14:55 6 15:30 7 16:05 8 16:40 FOOBURG ABA XAD 1 12:35 2 13:10 3 13:40 4 14:10 5 14:55 6 15:30 7 16:05 8 16:40