小编典典

从JSON对象创建熊猫数据框

json

我终于从包含许多json对象的文件中获得了我需要的数据输出,但是当它在数据中循环时,我需要一些帮助将以下输出转换为单个数据帧。这是产生输出的代码,包括输出外观的示例:

原始数据:

{
"zipcode":"08989",
"current"{"canwc":null,"cig":4900,"class":"observation","clds":"OVC","day_ind":"D","dewpt":19,"expireTimeGMT":1385486700,"feels_like":34,"gust":null,"hi":37,"humidex":null,"icon_code":26,"icon_extd":2600,"max_temp":37,"wxMan":"wx1111"},
"triggers":[53,31,9,21,48,7,40,178,55,179,176,26,103,175,33,51,20,57,112,30,50,113]
}
{
"zipcode":"08990",
"current":{"canwc":null,"cig":4900,"class":"observation","clds":"OVC","day_ind":"D","dewpt":19,"expireTimeGMT":1385486700,"feels_like":34,"gust":null,"hi":37,"humidex":null,"icon_code":26,"icon_extd":2600,"max_temp":37, "wxMan":"wx1111"},
"triggers":[53,31,9,21,48,7,40,178,55,179,176,26,103,175,33,51,20,57,112,30,50,113]
}

def lines_per_n(f, n):
    for line in f:
        yield ''.join(chain([line], itertools.islice(f, n - 1)))

for fin in glob.glob('*.txt'):
    with open(fin) as f:
        for chunk in lines_per_n(f, 5):
            try:
                jfile = json.loads(chunk)
                zipcode = jfile['zipcode']
                datetime = jfile['current']['proc_time']
                triggers = jfile['triggers']
                print pd.Series(jfile['zipcode']), 
                      pd.Series(jfile['current']['proc_time']),\
                      jfile['triggers']          
            except ValueError, e:
                pass
            else:
                pass

运行上面的命令时,我将获得示例输出,我希望将其存储为3列的pandas数据框中。

08988 20131126102946 []
08989 20131126102946 [53, 31, 9, 21, 48, 7, 40, 178, 55, 179]
08988 20131126102946 []
08989 20131126102946 [53, 31, 9, 21, 48, 7, 40, 178, 55, 179]
00544 20131126102946 [178, 30, 176, 103, 179, 112, 21, 20, 48]

因此,以下代码似乎更接近,因为如果我在列表中传递并转置df,它会给我一个时髦的df。关于如何正确调整此形状的任何想法吗?

def series_chunk(chunk):
    jfile = json.loads(chunk)
    zipcode = jfile['zipcode']
    datetime = jfile['current']['proc_time']
    triggers = jfile['triggers']
    return jfile['zipcode'],\
            jfile['current']['proc_time'],\
            jfile['triggers']

for fin in glob.glob('*.txt'):
    with open(fin) as f:
        for chunk in lines_per_n(f, 7):
            df1 = pd.DataFrame(list(series_chunk(chunk)))
            print df1.T

[u'08988', u'20131126102946', []]
[u'08989', u'20131126102946', [53, 31, 9, 21, 48, 7, 40, 178, 55, 179]]
[u'08988', u'20131126102946', []]
[u'08989', u'20131126102946', [53, 31, 9, 21, 48, 7, 40, 178, 55, 179]]

数据框:

   0               1   2
0  08988  20131126102946  []
       0               1                                                  2
0  08989  20131126102946  [53, 31, 9, 21, 48, 7, 40, 178, 55, 179, 176, ...
       0               1   2
0  08988  20131126102946  []
       0               1                                                  2
0  08989  20131126102946  [53, 31, 9, 21, 48, 7, 40, 178, 55, 179, 176, ...

这是我的最终代码和输出。如何捕获通过循环创建的每个数据帧,并将它们动态地连接为一个数据帧对象?

for fin in glob.glob('*.txt'):
    with open(fin) as f:
        print pd.concat([series_chunk(chunk) for chunk in lines_per_n(f, 7)], axis=1).T

       0               1                                                  2
0  08988  20131126102946                                                 []
1  08989  20131126102946  [53, 31, 9, 21, 48, 7, 40, 178, 55, 179, 176, ...
       0               1                                                  2
0  08988  20131126102946                                                 []
1  08989  20131126102946  [53, 31, 9, 21, 48, 7, 40, 178, 55, 179, 176, ...

阅读 264

收藏
2020-07-27

共1个答案

小编典典

注意:对于那些希望将json解析为大熊猫的人,如果您有 有效的 json(此问题没有),则应使用pandasread_json函数:

# can either pass string of the json, or a filepath to a file with valid json
In [99]: pd.read_json('[{"A": 1, "B": 2}, {"A": 3, "B": 4}]')
Out[99]:
   A  B
0  1  2
1  3  4

查看文档IO部分中的几个示例,可以传递给此函数的参数以及标准化结构化程度较低的json的方法。

如果您没有有效的json
,则在读入json之前先对字符串进行修改通常比较有效。

如果您有多个json文件,则应将DataFrame合并在一起(类似于此答案):

pd.concat([pd.read_json(file) for file in ...], ignore_index=True)

此示例的原始答案:

在正则表达式中使用后面的表达式作为传递给read_csv的分隔符:

In [11]: df = pd.read_csv('foo.csv', sep='(?<!,)\s', header=None)

In [12]: df
Out[12]: 
       0               1                                                  2
0   8988  20131126102946                                                 []
1   8989  20131126102946  [53, 31, 9, 21, 48, 7, 40, 178, 55, 179, 176, ...
2   8988  20131126102946                                                 []
3   8989  20131126102946  [53, 31, 9, 21, 48, 7, 40, 178, 55, 179, 176, ...
4    544  20131126102946  [178, 30, 176, 103, 179, 112, 21, 20, 48, 7, 5...
5    601  20131126094911                                                 []
6    602  20131126101056                                                 []
7    603  20131126101056                                                 []
8    604  20131126101056                                                 []
9    544  20131126102946  [178, 30, 176, 103, 179, 112, 21, 20, 48, 7, 5...
10   601  20131126094911                                                 []
11   602  20131126101056                                                 []
12   603  20131126101056                                                 []
13   604  20131126101056                                                 []

[14 rows x 3 columns]

如评论中所提到的,您可以通过将多个Series并置在一起来更直接地执行此操作…这样做也会更容易一些:

def series_chunk(chunk):
    jfile = json.loads(chunk)
    zipcode = jfile['zipcode']
    datetime = jfile['current']['proc_time']
    triggers = jfile['triggers']
    return pd.Series([jfile['zipcode'], jfile['current']['proc_time'], jfile['triggers']])

dfs = []
for fin in glob.glob('*.txt'):
    with open(fin) as f:
        df = pd.concat([series_chunk(chunk) for chunk in lines_per_n(f, 5)], axis=1)
        dfs.append(dfs)

df = pd.concat(dfs, ignore_index=True)

注意:您也可以将try / except移到中series_chunk

2020-07-27