给定一个硬币列表,它们的值(c1,c2,c3,… cj,…)和总和i。 找到总和为i的最小数量的硬币(我们可以根据需要使用任意数量的一种类型的硬币),或者报告无法选择以总和为S的方式选择硬币。
我昨天刚刚被介绍给动态编程,我试图为此编写代码。
# Optimal substructure: C[i] = 1 + min_j(C[i-cj]) cdict = {} def C(i, coins): if i <= 0: return 0 if i in cdict: return cdict[i] else: answer = 1 + min([C(i - cj, coins) for cj in coins]) cdict[i] = answer return answer
在此,C [i]是金额“ i”的最佳解决方案。程序中可用的硬币为{c1,c2,…,cj,…},我增加了递归限制,以避免最大递归深度超过错误。但是,该程序仅给某人一个正确的答案,当不可能解决时,它并不表示这样做。
我的代码有什么问题以及如何纠正它?
这是一个很大的算法问题,但老实说,我认为您的实现不正确,或者很抱歉,我可能不了解您函数的输入/输出。
这是实现的修改版本。
def C(i, coins, cdict = None): if cdict == None: cdict = {} if i <= 0: cdict[i] = 0 return cdict[i] elif i in cdict: return cdict[i] elif i in coins: cdict[i] = 1 return cdict[i] else: min = 0 for cj in coins: result = C(i - cj, coins) if result != 0: if min == 0 or (result + 1) < min: min = 1 + result cdict[i] = min return cdict[i]
这是我尝试解决类似问题的尝试,但是这次返回了硬币列表。我最初从递归算法开始,该算法接受一个总和和一个硬币列表,如果找不到这种配置,它可能返回一个硬币数量最少的列表,或者返回无。
def get_min_coin_configuration(sum = None, coins = None): if sum in coins: # if sum in coins, nothing to do but return. return [sum] elif max(coins) > sum: # if the largest coin is greater then the sum, there's nothing we can do. return None else: # check for each coin, keep track of the minimun configuration, then return it. min_length = None min_configuration = None for coin in coins: results = get_min_coin_configuration(sum = sum - coin, coins = coins) if results != None: if min_length == None or (1 + len(results)) < len(min_configuration): min_configuration = [coin] + results min_length = len(min_configuration) return min_configuration
好的,现在让我们看看是否可以通过使用动态编程(我称之为缓存)来改善它。
def get_min_coin_configuration(sum = None, coins = None, cache = None): if cache == None: # this is quite crucial if its in the definition its presistent ... cache = {} if sum in cache: return cache[sum] elif sum in coins: # if sum in coins, nothing to do but return. cache[sum] = [sum] return cache[sum] elif max(coins) > sum: # if the largest coin is greater then the sum, there's nothing we can do. cache[sum] = None return cache[sum] else: # check for each coin, keep track of the minimun configuration, then return it. min_length = None min_configuration = None for coin in coins: results = get_min_coin_configuration(sum = sum - coin, coins = coins, cache = cache) if results != None: if min_length == None or (1 + len(results)) < len(min_configuration): min_configuration = [coin] + results min_length = len(min_configuration) cache[sum] = min_configuration return cache[sum]
现在让我们运行一些测试。
assert all([ get_min_coin_configuration(**test[0]) == test[1] for test in [({'sum':25, 'coins':[1, 5, 10]}, [5, 10, 10]), ({'sum':153, 'coins':[1, 5, 10, 50]}, [1, 1, 1, 50, 50, 50]), ({'sum':100, 'coins':[1, 5, 10, 25]}, [25, 25, 25, 25]), ({'sum':123, 'coins':[5, 10, 25]}, None), ({'sum':100, 'coins':[1,5,25,100]}, [100])] ])
如果此测试不够强大,您也可以这样做。
import random random_sum = random.randint(10**3, 10**4) result = get_min_coin_configuration(sum = random_sum, coins = random.sample(range(10**3), 200)) assert sum(result) == random_sum
没有这样的硬币组合可能等于我们的random_sum,但我相信它的可能性很小…
我肯定那里有更好的实现方式,我试图强调可读性而不是性能。祝好运。
更新 了先前的代码,它有一个小错误,它应该检查最小硬币而不是最大硬币,重新编写符合pep8标准的算法,并[]在找不到组合的情况下返回代替None。
[]
None
def get_min_coin_configuration(total_sum, coins, cache=None): # shadowing python built-ins is frowned upon. # assert(all(c > 0 for c in coins)) Assuming all coins are > 0 if cache is None: # initialize cache. cache = {} if total_sum in cache: # check cache, for previously discovered solution. return cache[total_sum] elif total_sum in coins: # check if total_sum is one of the coins. cache[total_sum] = [total_sum] return [total_sum] elif min(coins) > total_sum: # check feasibility, if min(coins) > total_sum cache[total_sum] = [] # no combination of coins will yield solution as per our assumption (all +). return [] else: min_configuration = [] # default solution if none found. for coin in coins: # iterate over all coins, check which one will yield the smallest combination. results = get_min_coin_configuration(total_sum - coin, coins, cache=cache) # recursively search. if results and (not min_configuration or (1 + len(results)) < len(min_configuration)): # check if better. min_configuration = [coin] + results cache[total_sum] = min_configuration # save this solution, for future calculations. return cache[total_sum] assert all([ get_min_coin_configuration(**test[0]) == test[1] for test in [({'total_sum':25, 'coins':[1, 5, 10]}, [5, 10, 10]), ({'total_sum':153, 'coins':[1, 5, 10, 50]}, [1, 1, 1, 50, 50, 50]), ({'total_sum':100, 'coins':[1, 5, 10, 25]}, [25, 25, 25, 25]), ({'total_sum':123, 'coins':[5, 10, 25]}, []), ({'total_sum':100, 'coins':[1,5,25,100]}, [100])] ])