小编典典

Python-pandas高性能笛卡尔积(CROSS JOIN)

python

给定两个简单的DataFrames;

left = pd.DataFrame({'col1' : ['A', 'B', 'C'], 'col2' : [1, 2, 3]})
right = pd.DataFrame({'col1' : ['X', 'Y', 'Z'], 'col2' : [20, 30, 50]})

left

  col1  col2
0    A     1
1    B     2
2    C     3

right

  col1  col2
0    X    20
1    Y    30
2    Z    50

这些框架的叉积可以计算出来,如下所示:

A       1      X      20
A       1      Y      30
A       1      Z      50
B       2      X      20
B       2      Y      30
B       2      Z      50
C       3      X      20
C       3      Y      30
C       3      Z      50

计算结果的最有效方法是什么?


阅读 3784

收藏
2020-02-17

共1个答案

小编典典

让我们从建立基准开始。解决此问题的最简单方法是使用临时“键”列:

def cartesian_product_basic(left, right):
    return (
       left.assign(key=1).merge(right.assign(key=1), on='key').drop('key', 1))

cartesian_product_basic(left, right)

  col1_x  col2_x col1_y  col2_y
0      A       1      X      20
1      A       1      Y      30
2      A       1      Z      50
3      B       2      X      20
4      B       2      Y      30
5      B       2      Z      50
6      C       3      X      20
7      C       3      Y      30
8      C       3      Z      50

这是如何为两个DataFrame分配一个具有相同值(例如1)的临时“键”列的。merge然后对“键”执行多对多JOIN。

尽管多对多JOIN技巧适用于大小合理的DataFrame,但你会在较大数据上看到相对较低的性能。

更快的实现将需要NumPy。这是一些著名的一维笛卡尔积的NumPy实现。我们可以基于其中一些性能解决方案来获得所需的输出。但是,我最喜欢的是@senderle的第一个实现。

def cartesian_product(*arrays):
    la = len(arrays)
    dtype = np.result_type(*arrays)
    arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype)
    for i, a in enumerate(np.ix_(*arrays)):
        arr[...,i] = a
    return arr.reshape(-1, la)  

通用化:对唯一或非唯一索引数据帧进行CROSS JOIN

免责声明

这些解决方案针对具有非混合标量dtype的DataFrames进行了优化。如果处理混合dtype,请自担风险!

此技巧适用于任何类型的DataFrame。我们使用上述方法计算DataFrames数字索引的笛卡尔积·,使用它来重新索引DataFrames,然后

def cartesian_product_generalized(left, right):
    la, lb = len(left), len(right)
    idx = cartesian_product(np.ogrid[:la], np.ogrid[:lb])
    return pd.DataFrame(
        np.column_stack([left.values[idx[:,0]], right.values[idx[:,1]]]))

cartesian_product_generalized(left, right)

   0  1  2   3
0  A  1  X  20
1  A  1  Y  30
2  A  1  Z  50
3  B  2  X  20
4  B  2  Y  30
5  B  2  Z  50
6  C  3  X  20
7  C  3  Y  30
8  C  3  Z  50

np.array_equal(cartesian_product_generalized(left, right),
               cartesian_product_basic(left, right))
True

而且,沿着类似的路线,

left2 = left.copy()
left2.index = ['s1', 's2', 's1']

right2 = right.copy()
right2.index = ['x', 'y', 'y']


left2
   col1  col2
s1    A     1
s2    B     2
s1    C     3

right2
  col1  col2
x    X    20
y    Y    30
y    Z    50

np.array_equal(cartesian_product_generalized(left, right),
               cartesian_product_basic(left2, right2))
True

该解决方案可以推广到多个DataFrame。例如,

def cartesian_product_multi(*dfs):
    idx = cartesian_product(*[np.ogrid[:len(df)] for df in dfs])
    return pd.DataFrame(
        np.column_stack([df.values[idx[:,i]] for i,df in enumerate(dfs)]))

cartesian_product_multi(*[left, right, left]).head()

   0  1  2   3  4  5
0  A  1  X  20  A  1
1  A  1  X  20  B  2
2  A  1  X  20  C  3
3  A  1  X  20  D  4
4  A  1  Y  30  A  1

进一步简化
cartesian_product当只处理两个 DataFrame 时,可能会出现一个不涉及@senderle的简单解决方案。使用np.broadcast_arrays,我们可以达到几乎相同的性能水平。

def cartesian_product_simplified(left, right):
    la, lb = len(left), len(right)
    ia2, ib2 = np.broadcast_arrays(*np.ogrid[:la,:lb])

    return pd.DataFrame(
        np.column_stack([left.values[ia2.ravel()], right.values[ib2.ravel()]]))

np.array_equal(cartesian_product_simplified(left, right),
               cartesian_product_basic(left2, right2))
True

性能比较

在具有唯一索引的某些人为设计的DataFrame上对这些解决方案进行基准测试,

请注意,时间可能会根据你的设置,数据和cartesian_product适用的辅助功能选择而有所不同。

性能基准测试代码

这是时间脚本。上面定义了此处调用的所有功能。

from timeit import timeit
import pandas as pd
import matplotlib.pyplot as plt

res = pd.DataFrame(
       index=['cartesian_product_basic', 'cartesian_product_generalized', 
              'cartesian_product_multi', 'cartesian_product_simplified'],
       columns=[1, 10, 50, 100, 200, 300, 400, 500, 600, 800, 1000, 2000],
       dtype=float
)

for f in res.index: 
    for c in res.columns:
        # print(f,c)
        left2 = pd.concat([left] * c, ignore_index=True)
        right2 = pd.concat([right] * c, ignore_index=True)
        stmt = '{}(left2, right2)'.format(f)
        setp = 'from __main__ import left2, right2, {}'.format(f)
        res.at[f, c] = timeit(stmt, setp, number=5)

ax = res.div(res.min()).T.plot(loglog=True) 
ax.set_xlabel("N"); 
ax.set_ylabel("time (relative)");

plt.show()
2020-02-17