我正在尝试确定最佳的时间效率算法来完成下面描述的任务。
我有一套记录。对于这组记录,我具有连接数据,该数据指示该组记录中的记录对如何相互连接。这基本上表示一个无向图,其中记录是顶点,而连接数据是边。
集合中的所有记录都具有连接信息(即不存在孤立记录;集合中的每个记录都连接到集合中的一个或多个其他记录)。
我想从集合中选择任意两个记录,并能够显示所选记录之间的所有简单路径。“简单路径”是指在路径中没有重复记录的路径(即仅有限路径)。
注意:所选的两个记录将始终是不同的(即开始和结束顶点永远不会相同;没有周期)。
例如:
如果我有以下记录: A,B,C,D,E 并且以下表示连接: (A,B),(A,C),(B,A),(B,D),(B,E),(B,F),(C,A),(C,E), (C,F),(D,B),(E,C),(E,F),(F,B),(F,C),(F,E) [其中(A,B)表示记录A连接到记录B]
如果我选择B作为我的开始记录,选择E作为我的结束记录,则我想找到所有通过记录连接将记录B连接到记录E的简单路径。
将B连接到E的所有路径: B→E B-> F-> E B-> F-> C-> E B-> A-> C-> E B-> A-> C-> F-> E
这是一个例子,实际上我可能有包含数十万条记录的集合。
似乎可以通过对图形进行深度优先搜索来完成。 深度优先搜索将找到两个节点之间的所有非循环路径。 该算法应该非常快,并且可以扩展到大型图形(图形数据结构稀疏,因此仅使用所需的内存)。
我注意到您在上面指定的图形只有一个方向(B,E)的边。这是错字还是真的有向图?此解决方案不管如何。抱歉,我无法使用C语言完成此操作,在该领域我有点虚弱。我希望您将能够翻译此Java代码而没有太多麻烦。
Graph.java:
import java.util.HashMap; import java.util.LinkedHashSet; import java.util.LinkedList; import java.util.Map; import java.util.Set; public class Graph { private Map<String, LinkedHashSet<String>> map = new HashMap(); public void addEdge(String node1, String node2) { LinkedHashSet<String> adjacent = map.get(node1); if(adjacent==null) { adjacent = new LinkedHashSet(); map.put(node1, adjacent); } adjacent.add(node2); } public void addTwoWayVertex(String node1, String node2) { addEdge(node1, node2); addEdge(node2, node1); } public boolean isConnected(String node1, String node2) { Set adjacent = map.get(node1); if(adjacent==null) { return false; } return adjacent.contains(node2); } public LinkedList<String> adjacentNodes(String last) { LinkedHashSet<String> adjacent = map.get(last); if(adjacent==null) { return new LinkedList(); } return new LinkedList<String>(adjacent); } }
Search.java:
import java.util.LinkedList; public class Search { private static final String START = "B"; private static final String END = "E"; public static void main(String[] args) { // this graph is directional Graph graph = new Graph(); graph.addEdge("A", "B"); graph.addEdge("A", "C"); graph.addEdge("B", "A"); graph.addEdge("B", "D"); graph.addEdge("B", "E"); // this is the only one-way connection graph.addEdge("B", "F"); graph.addEdge("C", "A"); graph.addEdge("C", "E"); graph.addEdge("C", "F"); graph.addEdge("D", "B"); graph.addEdge("E", "C"); graph.addEdge("E", "F"); graph.addEdge("F", "B"); graph.addEdge("F", "C"); graph.addEdge("F", "E"); LinkedList<String> visited = new LinkedList(); visited.add(START); new Search().depthFirst(graph, visited); } private void depthFirst(Graph graph, LinkedList<String> visited) { LinkedList<String> nodes = graph.adjacentNodes(visited.getLast()); // examine adjacent nodes for (String node : nodes) { if (visited.contains(node)) { continue; } if (node.equals(END)) { visited.add(node); printPath(visited); visited.removeLast(); break; } } for (String node : nodes) { if (visited.contains(node) || node.equals(END)) { continue; } visited.addLast(node); depthFirst(graph, visited); visited.removeLast(); } } private void printPath(LinkedList<String> visited) { for (String node : visited) { System.out.print(node); System.out.print(" "); } System.out.println(); } }
程序输出:
B E B A C E B A C F E B F E B F C E