小编典典

数百万个3D点:如何找到最接近给定点的10个点?

algorithm

3-d中的一个点由(x,y,z)定义。任何两个点(X,Y,Z)和(x,y,z)之间的距离d为d = Sqrt [(Xx)^ 2 +(Yy)^ 2
+(Zz)^
2]。现在,文件中有一百万个条目,每个条目都是某个空间点,没有特定的顺序。给定任意一点(a,b,c),请找到与其最近的10个点。您将如何存储百万点,以及如何从该数据结构中检索这10点。


阅读 305

收藏
2020-07-28

共1个答案

小编典典

百万点是少数。最简单的方法在这里有效(基于KDTree的代码较慢(仅查询一个点))。

暴力破解方法(时间约1秒)

#!/usr/bin/env python
import numpy

NDIM = 3 # number of dimensions

# read points into array
a = numpy.fromfile('million_3D_points.txt', sep=' ')
a.shape = a.size / NDIM, NDIM

point = numpy.random.uniform(0, 100, NDIM) # choose random point
print 'point:', point
d = ((a-point)**2).sum(axis=1)  # compute distances
ndx = d.argsort() # indirect sort

# print 10 nearest points to the chosen one
import pprint
pprint.pprint(zip(a[ndx[:10]], d[ndx[:10]]))

运行:

$ time python nearest.py 
point: [ 69.06310224   2.23409409  50.41979143]
[(array([ 69.,   2.,  50.]), 0.23500677815852947),
 (array([ 69.,   2.,  51.]), 0.39542392750839772),
 (array([ 69.,   3.,  50.]), 0.76681859086988302),
 (array([ 69.,   3.,  50.]), 0.76681859086988302),
 (array([ 69.,   3.,  51.]), 0.9272357402197513),
 (array([ 70.,   2.,  50.]), 1.1088022980015722),
 (array([ 70.,   2.,  51.]), 1.2692194473514404),
 (array([ 70.,   2.,  51.]), 1.2692194473514404),
 (array([ 70.,   3.,  51.]), 1.801031260062794),
 (array([ 69.,   1.,  51.]), 1.8636121147970444)]

real    0m1.122s
user    0m1.010s
sys 0m0.120s

这是生成百万个3D点的脚本:

#!/usr/bin/env python
import random
for _ in xrange(10**6):
    print ' '.join(str(random.randrange(100)) for _ in range(3))

输出:

$ head million_3D_points.txt

18 56 26
19 35 74
47 43 71
82 63 28
43 82 0
34 40 16
75 85 69
88 58 3
0 63 90
81 78 98

您可以使用该代码来测试更复杂的数据结构和算法(例如,它们实际上是消耗更少的内存还是比上面最简单的方法消耗的内存更快)。值得注意的是,这是目前唯一包含有效代码的答案。

基于KDTree的解决方案(时间约1.4秒)

#!/usr/bin/env python
import numpy

NDIM = 3 # number of dimensions

# read points into array
a = numpy.fromfile('million_3D_points.txt', sep=' ')
a.shape = a.size / NDIM, NDIM

point =  [ 69.06310224,   2.23409409,  50.41979143] # use the same point as above
print 'point:', point


from scipy.spatial import KDTree

# find 10 nearest points
tree = KDTree(a, leafsize=a.shape[0]+1)
distances, ndx = tree.query([point], k=10)

# print 10 nearest points to the chosen one
print a[ndx]

运行:

$ time python nearest_kdtree.py

point: [69.063102240000006, 2.2340940900000001, 50.419791429999997]
[[[ 69.   2.  50.]
  [ 69.   2.  51.]
  [ 69.   3.  50.]
  [ 69.   3.  50.]
  [ 69.   3.  51.]
  [ 70.   2.  50.]
  [ 70.   2.  51.]
  [ 70.   2.  51.]
  [ 70.   3.  51.]
  [ 69.   1.  51.]]]

real    0m1.359s
user    0m1.280s
sys 0m0.080s

在C ++中进行部分排序(时间约1.1秒)

// $ g++ nearest.cc && (time ./a.out < million_3D_points.txt )
#include <algorithm>
#include <iostream>
#include <vector>

#include <boost/lambda/lambda.hpp>  // _1
#include <boost/lambda/bind.hpp>    // bind()
#include <boost/tuple/tuple_io.hpp>

namespace {
  typedef double coord_t;
  typedef boost::tuple<coord_t,coord_t,coord_t> point_t;

  coord_t distance_sq(const point_t& a, const point_t& b) { // or boost::geometry::distance
    coord_t x = a.get<0>() - b.get<0>();
    coord_t y = a.get<1>() - b.get<1>();
    coord_t z = a.get<2>() - b.get<2>();
    return x*x + y*y + z*z;
  }
}

int main() {
  using namespace std;
  using namespace boost::lambda; // _1, _2, bind()

  // read array from stdin
  vector<point_t> points;
  cin.exceptions(ios::badbit); // throw exception on bad input
  while(cin) {
    coord_t x,y,z;
    cin >> x >> y >> z;    
    points.push_back(boost::make_tuple(x,y,z));
  }

  // use point value from previous examples
  point_t point(69.06310224, 2.23409409, 50.41979143);
  cout << "point: " << point << endl;  // 1.14s

  // find 10 nearest points using partial_sort() 
  // Complexity: O(N)*log(m) comparisons (O(N)*log(N) worst case for the implementation)
  const size_t m = 10;
  partial_sort(points.begin(), points.begin() + m, points.end(), 
               bind(less<coord_t>(), // compare by distance to the point
                    bind(distance_sq, _1, point), 
                    bind(distance_sq, _2, point)));
  for_each(points.begin(), points.begin() + m, cout << _1 << "\n"); // 1.16s
}

运行:

g++ -O3 nearest.cc && (time ./a.out < million_3D_points.txt )
point: (69.0631 2.23409 50.4198)
(69 2 50)
(69 2 51)
(69 3 50)
(69 3 50)
(69 3 51)
(70 2 50)
(70 2 51)
(70 2 51)
(70 3 51)
(69 1 51)

real    0m1.152s
user    0m1.140s
sys 0m0.010s

C ++中的优先级队列(时间约1.2秒)

#include <algorithm>           // make_heap
#include <functional>          // binary_function<>
#include <iostream>

#include <boost/range.hpp>     // boost::begin(), boost::end()
#include <boost/tr1/tuple.hpp> // get<>, tuple<>, cout <<

namespace {
  typedef double coord_t;
  typedef std::tr1::tuple<coord_t,coord_t,coord_t> point_t;

  // calculate distance (squared) between points `a` & `b`
  coord_t distance_sq(const point_t& a, const point_t& b) { 
    // boost::geometry::distance() squared
    using std::tr1::get;
    coord_t x = get<0>(a) - get<0>(b);
    coord_t y = get<1>(a) - get<1>(b);
    coord_t z = get<2>(a) - get<2>(b);
    return x*x + y*y + z*z;
  }

  // read from input stream `in` to the point `point_out`
  std::istream& getpoint(std::istream& in, point_t& point_out) {    
    using std::tr1::get;
    return (in >> get<0>(point_out) >> get<1>(point_out) >> get<2>(point_out));
  }

  // Adaptable binary predicate that defines whether the first
  // argument is nearer than the second one to given reference point
  template<class T>
  class less_distance : public std::binary_function<T, T, bool> {
    const T& point;
  public:
    less_distance(const T& reference_point) : point(reference_point) {}

    bool operator () (const T& a, const T& b) const {
      return distance_sq(a, point) < distance_sq(b, point);
    } 
  };
}

int main() {
  using namespace std;

  // use point value from previous examples
  point_t point(69.06310224, 2.23409409, 50.41979143);
  cout << "point: " << point << endl;

  const size_t nneighbours = 10; // number of nearest neighbours to find
  point_t points[nneighbours+1];

  // populate `points`
  for (size_t i = 0; getpoint(cin, points[i]) && i < nneighbours; ++i)
    ;

  less_distance<point_t> less_distance_point(point);
  make_heap  (boost::begin(points), boost::end(points), less_distance_point);

  // Complexity: O(N*log(m))
  while(getpoint(cin, points[nneighbours])) {
    // add points[-1] to the heap; O(log(m))
    push_heap(boost::begin(points), boost::end(points), less_distance_point); 
    // remove (move to last position) the most distant from the
    // `point` point; O(log(m))
    pop_heap (boost::begin(points), boost::end(points), less_distance_point);
  }

  // print results
  push_heap  (boost::begin(points), boost::end(points), less_distance_point);
  //   O(m*log(m))
  sort_heap  (boost::begin(points), boost::end(points), less_distance_point);
  for (size_t i = 0; i < nneighbours; ++i) {
    cout << points[i] << ' ' << distance_sq(points[i], point) << '\n';  
  }
}

运行:

$ g++ -O3 nearest.cc && (time ./a.out < million_3D_points.txt )

point: (69.0631 2.23409 50.4198)
(69 2 50) 0.235007
(69 2 51) 0.395424
(69 3 50) 0.766819
(69 3 50) 0.766819
(69 3 51) 0.927236
(70 2 50) 1.1088
(70 2 51) 1.26922
(70 2 51) 1.26922
(70 3 51) 1.80103
(69 1 51) 1.86361

real    0m1.174s
user    0m1.180s
sys 0m0.000s

基于线性搜索的方法(时间约1.15秒)

// $ g++ -O3 nearest.cc && (time ./a.out < million_3D_points.txt )
#include <algorithm>           // sort
#include <functional>          // binary_function<>
#include <iostream>

#include <boost/foreach.hpp>
#include <boost/range.hpp>     // begin(), end()
#include <boost/tr1/tuple.hpp> // get<>, tuple<>, cout <<

#define foreach BOOST_FOREACH

namespace {
  typedef double coord_t;
  typedef std::tr1::tuple<coord_t,coord_t,coord_t> point_t;

  // calculate distance (squared) between points `a` & `b`
  coord_t distance_sq(const point_t& a, const point_t& b);

  // read from input stream `in` to the point `point_out`
  std::istream& getpoint(std::istream& in, point_t& point_out);

  // Adaptable binary predicate that defines whether the first
  // argument is nearer than the second one to given reference point
  class less_distance : public std::binary_function<point_t, point_t, bool> {
    const point_t& point;
  public:
    explicit less_distance(const point_t& reference_point) 
        : point(reference_point) {}
    bool operator () (const point_t& a, const point_t& b) const {
      return distance_sq(a, point) < distance_sq(b, point);
    } 
  };
}

int main() {
  using namespace std;

  // use point value from previous examples
  point_t point(69.06310224, 2.23409409, 50.41979143);
  cout << "point: " << point << endl;
  less_distance nearer(point);

  const size_t nneighbours = 10; // number of nearest neighbours to find
  point_t points[nneighbours];

  // populate `points`
  foreach (point_t& p, points)
    if (! getpoint(cin, p))
      break;

  // Complexity: O(N*m)
  point_t current_point;
  while(cin) {
    getpoint(cin, current_point); //NOTE: `cin` fails after the last
                                  //point, so one can't lift it up to
                                  //the while condition

    // move to the last position the most distant from the
    // `point` point; O(m)
    foreach (point_t& p, points)
      if (nearer(current_point, p)) 
        // found point that is nearer to the `point`

        //NOTE: could use insert (on sorted sequence) & break instead
        //of swap but in that case it might be better to use
        //heap-based algorithm altogether
        std::swap(current_point, p);
  }

  // print results;  O(m*log(m))
  sort(boost::begin(points), boost::end(points), nearer);
  foreach (point_t p, points)
    cout << p << ' ' << distance_sq(p, point) << '\n';  
}

namespace {
  coord_t distance_sq(const point_t& a, const point_t& b) { 
    // boost::geometry::distance() squared
    using std::tr1::get;
    coord_t x = get<0>(a) - get<0>(b);
    coord_t y = get<1>(a) - get<1>(b);
    coord_t z = get<2>(a) - get<2>(b);
    return x*x + y*y + z*z;
  }

  std::istream& getpoint(std::istream& in, point_t& point_out) {    
    using std::tr1::get;
    return (in >> get<0>(point_out) >> get<1>(point_out) >> get<2>(point_out));
  }
}

测量表明,大部分时间都花在从文件读取数组上,而实际计算所花的时间要少得多。

2020-07-28