3-d中的一个点由(x,y,z)定义。任何两个点(X,Y,Z)和(x,y,z)之间的距离d为d = Sqrt [(Xx)^ 2 +(Yy)^ 2 +(Zz)^ 2]。现在,文件中有一百万个条目,每个条目都是某个空间点,没有特定的顺序。给定任意一点(a,b,c),请找到与其最近的10个点。您将如何存储百万点,以及如何从该数据结构中检索这10点。
百万点是少数。最简单的方法在这里有效(基于KDTree的代码较慢(仅查询一个点))。
#!/usr/bin/env python import numpy NDIM = 3 # number of dimensions # read points into array a = numpy.fromfile('million_3D_points.txt', sep=' ') a.shape = a.size / NDIM, NDIM point = numpy.random.uniform(0, 100, NDIM) # choose random point print 'point:', point d = ((a-point)**2).sum(axis=1) # compute distances ndx = d.argsort() # indirect sort # print 10 nearest points to the chosen one import pprint pprint.pprint(zip(a[ndx[:10]], d[ndx[:10]]))
运行:
$ time python nearest.py point: [ 69.06310224 2.23409409 50.41979143] [(array([ 69., 2., 50.]), 0.23500677815852947), (array([ 69., 2., 51.]), 0.39542392750839772), (array([ 69., 3., 50.]), 0.76681859086988302), (array([ 69., 3., 50.]), 0.76681859086988302), (array([ 69., 3., 51.]), 0.9272357402197513), (array([ 70., 2., 50.]), 1.1088022980015722), (array([ 70., 2., 51.]), 1.2692194473514404), (array([ 70., 2., 51.]), 1.2692194473514404), (array([ 70., 3., 51.]), 1.801031260062794), (array([ 69., 1., 51.]), 1.8636121147970444)] real 0m1.122s user 0m1.010s sys 0m0.120s
这是生成百万个3D点的脚本:
#!/usr/bin/env python import random for _ in xrange(10**6): print ' '.join(str(random.randrange(100)) for _ in range(3))
输出:
$ head million_3D_points.txt 18 56 26 19 35 74 47 43 71 82 63 28 43 82 0 34 40 16 75 85 69 88 58 3 0 63 90 81 78 98
您可以使用该代码来测试更复杂的数据结构和算法(例如,它们实际上是消耗更少的内存还是比上面最简单的方法消耗的内存更快)。值得注意的是,这是目前唯一包含有效代码的答案。
基于KDTree的解决方案(时间约1.4秒)
#!/usr/bin/env python import numpy NDIM = 3 # number of dimensions # read points into array a = numpy.fromfile('million_3D_points.txt', sep=' ') a.shape = a.size / NDIM, NDIM point = [ 69.06310224, 2.23409409, 50.41979143] # use the same point as above print 'point:', point from scipy.spatial import KDTree # find 10 nearest points tree = KDTree(a, leafsize=a.shape[0]+1) distances, ndx = tree.query([point], k=10) # print 10 nearest points to the chosen one print a[ndx]
$ time python nearest_kdtree.py point: [69.063102240000006, 2.2340940900000001, 50.419791429999997] [[[ 69. 2. 50.] [ 69. 2. 51.] [ 69. 3. 50.] [ 69. 3. 50.] [ 69. 3. 51.] [ 70. 2. 50.] [ 70. 2. 51.] [ 70. 2. 51.] [ 70. 3. 51.] [ 69. 1. 51.]]] real 0m1.359s user 0m1.280s sys 0m0.080s
// $ g++ nearest.cc && (time ./a.out < million_3D_points.txt ) #include <algorithm> #include <iostream> #include <vector> #include <boost/lambda/lambda.hpp> // _1 #include <boost/lambda/bind.hpp> // bind() #include <boost/tuple/tuple_io.hpp> namespace { typedef double coord_t; typedef boost::tuple<coord_t,coord_t,coord_t> point_t; coord_t distance_sq(const point_t& a, const point_t& b) { // or boost::geometry::distance coord_t x = a.get<0>() - b.get<0>(); coord_t y = a.get<1>() - b.get<1>(); coord_t z = a.get<2>() - b.get<2>(); return x*x + y*y + z*z; } } int main() { using namespace std; using namespace boost::lambda; // _1, _2, bind() // read array from stdin vector<point_t> points; cin.exceptions(ios::badbit); // throw exception on bad input while(cin) { coord_t x,y,z; cin >> x >> y >> z; points.push_back(boost::make_tuple(x,y,z)); } // use point value from previous examples point_t point(69.06310224, 2.23409409, 50.41979143); cout << "point: " << point << endl; // 1.14s // find 10 nearest points using partial_sort() // Complexity: O(N)*log(m) comparisons (O(N)*log(N) worst case for the implementation) const size_t m = 10; partial_sort(points.begin(), points.begin() + m, points.end(), bind(less<coord_t>(), // compare by distance to the point bind(distance_sq, _1, point), bind(distance_sq, _2, point))); for_each(points.begin(), points.begin() + m, cout << _1 << "\n"); // 1.16s }
g++ -O3 nearest.cc && (time ./a.out < million_3D_points.txt ) point: (69.0631 2.23409 50.4198) (69 2 50) (69 2 51) (69 3 50) (69 3 50) (69 3 51) (70 2 50) (70 2 51) (70 2 51) (70 3 51) (69 1 51) real 0m1.152s user 0m1.140s sys 0m0.010s
#include <algorithm> // make_heap #include <functional> // binary_function<> #include <iostream> #include <boost/range.hpp> // boost::begin(), boost::end() #include <boost/tr1/tuple.hpp> // get<>, tuple<>, cout << namespace { typedef double coord_t; typedef std::tr1::tuple<coord_t,coord_t,coord_t> point_t; // calculate distance (squared) between points `a` & `b` coord_t distance_sq(const point_t& a, const point_t& b) { // boost::geometry::distance() squared using std::tr1::get; coord_t x = get<0>(a) - get<0>(b); coord_t y = get<1>(a) - get<1>(b); coord_t z = get<2>(a) - get<2>(b); return x*x + y*y + z*z; } // read from input stream `in` to the point `point_out` std::istream& getpoint(std::istream& in, point_t& point_out) { using std::tr1::get; return (in >> get<0>(point_out) >> get<1>(point_out) >> get<2>(point_out)); } // Adaptable binary predicate that defines whether the first // argument is nearer than the second one to given reference point template<class T> class less_distance : public std::binary_function<T, T, bool> { const T& point; public: less_distance(const T& reference_point) : point(reference_point) {} bool operator () (const T& a, const T& b) const { return distance_sq(a, point) < distance_sq(b, point); } }; } int main() { using namespace std; // use point value from previous examples point_t point(69.06310224, 2.23409409, 50.41979143); cout << "point: " << point << endl; const size_t nneighbours = 10; // number of nearest neighbours to find point_t points[nneighbours+1]; // populate `points` for (size_t i = 0; getpoint(cin, points[i]) && i < nneighbours; ++i) ; less_distance<point_t> less_distance_point(point); make_heap (boost::begin(points), boost::end(points), less_distance_point); // Complexity: O(N*log(m)) while(getpoint(cin, points[nneighbours])) { // add points[-1] to the heap; O(log(m)) push_heap(boost::begin(points), boost::end(points), less_distance_point); // remove (move to last position) the most distant from the // `point` point; O(log(m)) pop_heap (boost::begin(points), boost::end(points), less_distance_point); } // print results push_heap (boost::begin(points), boost::end(points), less_distance_point); // O(m*log(m)) sort_heap (boost::begin(points), boost::end(points), less_distance_point); for (size_t i = 0; i < nneighbours; ++i) { cout << points[i] << ' ' << distance_sq(points[i], point) << '\n'; } }
$ g++ -O3 nearest.cc && (time ./a.out < million_3D_points.txt ) point: (69.0631 2.23409 50.4198) (69 2 50) 0.235007 (69 2 51) 0.395424 (69 3 50) 0.766819 (69 3 50) 0.766819 (69 3 51) 0.927236 (70 2 50) 1.1088 (70 2 51) 1.26922 (70 2 51) 1.26922 (70 3 51) 1.80103 (69 1 51) 1.86361 real 0m1.174s user 0m1.180s sys 0m0.000s
// $ g++ -O3 nearest.cc && (time ./a.out < million_3D_points.txt ) #include <algorithm> // sort #include <functional> // binary_function<> #include <iostream> #include <boost/foreach.hpp> #include <boost/range.hpp> // begin(), end() #include <boost/tr1/tuple.hpp> // get<>, tuple<>, cout << #define foreach BOOST_FOREACH namespace { typedef double coord_t; typedef std::tr1::tuple<coord_t,coord_t,coord_t> point_t; // calculate distance (squared) between points `a` & `b` coord_t distance_sq(const point_t& a, const point_t& b); // read from input stream `in` to the point `point_out` std::istream& getpoint(std::istream& in, point_t& point_out); // Adaptable binary predicate that defines whether the first // argument is nearer than the second one to given reference point class less_distance : public std::binary_function<point_t, point_t, bool> { const point_t& point; public: explicit less_distance(const point_t& reference_point) : point(reference_point) {} bool operator () (const point_t& a, const point_t& b) const { return distance_sq(a, point) < distance_sq(b, point); } }; } int main() { using namespace std; // use point value from previous examples point_t point(69.06310224, 2.23409409, 50.41979143); cout << "point: " << point << endl; less_distance nearer(point); const size_t nneighbours = 10; // number of nearest neighbours to find point_t points[nneighbours]; // populate `points` foreach (point_t& p, points) if (! getpoint(cin, p)) break; // Complexity: O(N*m) point_t current_point; while(cin) { getpoint(cin, current_point); //NOTE: `cin` fails after the last //point, so one can't lift it up to //the while condition // move to the last position the most distant from the // `point` point; O(m) foreach (point_t& p, points) if (nearer(current_point, p)) // found point that is nearer to the `point` //NOTE: could use insert (on sorted sequence) & break instead //of swap but in that case it might be better to use //heap-based algorithm altogether std::swap(current_point, p); } // print results; O(m*log(m)) sort(boost::begin(points), boost::end(points), nearer); foreach (point_t p, points) cout << p << ' ' << distance_sq(p, point) << '\n'; } namespace { coord_t distance_sq(const point_t& a, const point_t& b) { // boost::geometry::distance() squared using std::tr1::get; coord_t x = get<0>(a) - get<0>(b); coord_t y = get<1>(a) - get<1>(b); coord_t z = get<2>(a) - get<2>(b); return x*x + y*y + z*z; } std::istream& getpoint(std::istream& in, point_t& point_out) { using std::tr1::get; return (in >> get<0>(point_out) >> get<1>(point_out) >> get<2>(point_out)); } }
测量表明,大部分时间都花在从文件读取数组上,而实际计算所花的时间要少得多。