我正在寻找一种算法,该算法将给定数字表示为(最多)四个平方的总和。
120 = 8 2 + 6 2 + 4 2 + 2 2 6 = 0 2 + 1 2 + 1 2 + 2 2 20 = 4 2 + 2 2 + 0 2 + 0 2
取平方根,其余部分重复此步骤:
while (count != 4) { root = (int) Math.sqrt(N) N -= root * root count++ }
但是,即使有解决方案,当 N 为23时,此操作也会失败:
3 2 + 3 2 + 2 2 + 1 2
还有其他算法可以做到吗?
总是有可能吗?
是的,拉格朗日的四平方定理指出:
每个自然数都可以表示为四个整数平方的和。
已经通过多种方式证明了这一点。
有一些更聪明的算法,但是我建议使用以下算法:
将数字分解为主要因子。它们不必是素数,但是它们越小越好:素数是最好的。然后针对以下每个因素解决任务,并将得到的4个正方形与先前找到的4个正方形(具有Euler的四正方形标识)组合。
(a 2 + b 2 + c 2 + d 2)(A 2 + B 2 + C 2 + D 2)= (aA + bB + cC + dD)2 + (aB-bA + cD-dC)2 + ( aC-bD-cA + dB)2 + (aD + bC-cB-dA)2
4 一个(8B + 7)
如果找不到合适的正方形,请尝试下一个较小的正方形,直到找到一个。它保证会有一个,并且大多数都可以在几次重试中找到。
如果所有与3模4一致的 n 的质数因子均出现偶数指数,则 n 可表示为两个平方之和。反之亦成立。
如果找不到合适的正方形,请尝试下一个较小的正方形,直到找到一个。保证会有一个。
这大概是个主意。为了找到主要因素,有几种解决方案。下面我将仅使用Eratosthenes筛。
这是JavaScript代码,因此您可以立即运行它-它将产生一个随机数作为输入并将其显示为四个平方的和:
function divisor(n, factor) { var divisor = 1; while (n % factor == 0) { n = n / factor; divisor = divisor * factor; } return divisor; } function getPrimesUntil(n) { // Prime sieve algorithm var range = Math.floor(Math.sqrt(n)) + 1; var isPrime = Array(n).fill(1); var primes = [2]; for (var m = 3; m < range; m += 2) { if (isPrime[m]) { primes.push(m); for (var k = m * m; k <= n; k += m) { isPrime[k] = 0; } } } for (var m = range; m <= n; m += 2) { if (isPrime[m]) primes.push(m); } return { primes: primes, factorize: function (n) { var p, count, primeFactors; // Trial division algorithm if (n < 2) return []; primeFactors = []; for (p of this.primes) { count = 0; while (n % p == 0) { count++; n /= p; } if (count) primeFactors.push({value: p, count: count}); } if (n > 1) { primeFactors.push({value: n, count: 1}); } return primeFactors; } } } function squareTerms4(n) { var n1, n2, n3, n4, sq, sq1, sq2, sq3, sq4, primes, factors, f, f3, factors3, ok, res1, res2, res3, res4; primes = getPrimesUntil(n); factors = primes.factorize(n); res1 = n > 0 ? 1 : 0; res2 = res3 = res4 = 0; for (f of factors) { // For each of the factors: n1 = f.value; // 1. Find a suitable first square for (sq1 = Math.floor(Math.sqrt(n1)); sq1>0; sq1--) { n2 = n1 - sq1*sq1; // A number can be written as a sum of three squares // <==> it is NOT of the form 4^a(8b+7) if ( (n2 / divisor(n2, 4)) % 8 !== 7 ) break; // found a possibility } // 2. Find a suitable second square for (sq2 = Math.floor(Math.sqrt(n2)); sq2>0; sq2--) { n3 = n2 - sq2*sq2; // A number can be written as a sum of two squares // <==> all its prime factors of the form 4a+3 have an even exponent factors3 = primes.factorize(n3); ok = true; for (f3 of factors3) { ok = (f3.value % 4 != 3) || (f3.count % 2 == 0); if (!ok) break; } if (ok) break; } // To save time: extract the largest square divisor from the previous factorisation: sq = 1; for (f3 of factors3) { sq *= Math.pow(f3.value, (f3.count - f3.count % 2) / 2); f3.count = f3.count % 2; } n3 /= sq*sq; // 3. Find a suitable third square sq4 = 0; // b. Find square for the remaining value: for (sq3 = Math.floor(Math.sqrt(n3)); sq3>0; sq3--) { n4 = n3 - sq3*sq3; // See if this yields a sum of two squares: sq4 = Math.floor(Math.sqrt(n4)); if (n4 == sq4*sq4) break; // YES! } // Incorporate the square divisor back into the step-3 result: sq3 *= sq; sq4 *= sq; // 4. Merge this quadruple of squares with any previous // quadruple we had, using the Euler square identity: while (f.count--) { [res1, res2, res3, res4] = [ Math.abs(res1*sq1 + res2*sq2 + res3*sq3 + res4*sq4), Math.abs(res1*sq2 - res2*sq1 + res3*sq4 - res4*sq3), Math.abs(res1*sq3 - res2*sq4 - res3*sq1 + res4*sq2), Math.abs(res1*sq4 + res2*sq3 - res3*sq2 - res4*sq1) ]; } } // Return the 4 squares in descending order (for convenience): return [res1, res2, res3, res4].sort( (a,b) => b-a ); } // Produce the result for some random input number var n = Math.floor(Math.random() * 1000000); var solution = squareTerms4(n); // Perform the sum of squares to see it is correct: var check = solution.reduce( (a,b) => a+b*b, 0 ); if (check !== n) throw "FAILURE: difference " + n + " - " + check; // Print the result console.log(n + ' = ' + solution.map( x => x+'²' ).join(' + '));
迈克尔·巴尔(MichaelBarr)撰写的有关该主题的文章可能代表了一种更省时的方法,但是本文的目的更多是作为一种证明,而不是一种算法。但是,如果您需要更高的时间效率,则可以考虑将其与更高效的分解算法一起使用。